Tag Archives: roller bearings

China high quality Bearing Needle Puller Extractor Slewing Skateboard Bearings Thrust Balls Thrust Clutch Ceramic Rod End Roller Manufacturing Flange Spherical Coupling with Best Sales

Product Description

   koyo bearing needle puller extractor slewing skateboard bearings thrust balls thrust                 clutch ceramic rod end roller manufacturing flange spherical coupling

What is CZPT bearing?

Koyo Bearing is a brand of bearings manufactured by JTEKT Corporation, a Japanese multinational automotive and industrial manufacturing company. CZPT bearings are used in a wide variety of applications, including automotive, industrial, and commercial equipment.

Koyo bearings are known for their high quality, durability, and performance. They are manufactured using state-of-the-art technology and materials, and they are subjected to rigorous quality control standards. CZPT bearings are also backed by a comprehensive warranty program.

Some of the benefits of using CZPT bearings include:

  • High quality and durability
  • Performance
  • State-of-the-art technology
  • Materials
  • Rigorous quality control standards
  • Comprehensive warranty program

Koyo bearings are a trusted choice for a wide range of applications. They are used in everything from automobiles and industrial equipment to medical devices and aerospace applications. CZPT bearings are known for their high quality, durability, and performance.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Aligning Bearings
Load Direction: Axial Bearing
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

ball bearing

Are there Specific Maintenance Practices to Ensure the Longevity of Ball Bearings?

Maintaining ball bearings is essential to ensure their longevity, reliable performance, and prevent premature failure. Proper maintenance practices can extend the lifespan of ball bearings and the equipment they are used in. Here are specific maintenance practices to consider:

  • Regular Lubrication:

Implement a regular lubrication schedule using the appropriate lubricant for the application. Lubrication reduces friction, prevents wear, and helps dissipate heat. Follow manufacturer guidelines for lubricant type, quantity, and frequency.

  • Clean Environment:

Keep the operating environment clean and free from contaminants. Dust, dirt, and debris can infiltrate bearings and cause damage. Use seals or shields to protect bearings from contaminants, especially in harsh environments.

  • Proper Installation:

Ensure correct installation of bearings using proper tools and techniques. Improper installation can lead to misalignment, uneven load distribution, and premature wear. Follow manufacturer recommendations for installation procedures.

  • Regular Inspections:

Perform routine visual inspections to check for signs of wear, damage, or contamination. Regular inspections can help identify issues early and prevent further damage. Pay attention to noise, vibration, and temperature changes.

  • Temperature Monitoring:

Monitor bearing temperatures during operation using infrared thermometers or sensors. Abnormal temperature increases can indicate inadequate lubrication, misalignment, or other problems.

  • Correct Handling:

Handle bearings with care to prevent damage during storage, transportation, and installation. Avoid dropping or subjecting them to impacts that can affect their internal components.

  • Bearing Removal and Replacement:

Follow proper procedures when removing and replacing bearings. Use appropriate tools and techniques to avoid damage to the bearing or the surrounding components.

  • Alignment Maintenance:

Maintain proper shaft and housing alignment to prevent excessive loads and wear on the bearing. Misalignment can lead to increased stress and premature failure.

  • Training and Education:

Provide training to operators and maintenance personnel on proper bearing maintenance and handling practices. Educated personnel are more likely to identify issues and perform maintenance correctly.

  • Documented Records:

Keep records of maintenance activities, inspections, lubrication schedules, and any issues encountered. This documentation helps track the bearing’s performance over time and informs future maintenance decisions.

By implementing these maintenance practices, you can ensure the longevity of ball bearings, minimize downtime, reduce operational costs, and maintain the reliability of the equipment they are a part of.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China high quality Bearing Needle Puller Extractor Slewing Skateboard Bearings Thrust Balls Thrust Clutch Ceramic Rod End Roller Manufacturing Flange Spherical Coupling   with Best SalesChina high quality Bearing Needle Puller Extractor Slewing Skateboard Bearings Thrust Balls Thrust Clutch Ceramic Rod End Roller Manufacturing Flange Spherical Coupling   with Best Sales
editor by CX 2024-04-11

China OEM Wholesale Cheap ABEC 11 Skate 608 Deep Grove Skateboard Roller Ball Bearings manufacturer

Product Description

 

Product name Skateboard Bearing
Material chrome steel
Application skateboard
Model MS2303-8
Size 22*8*7 mm
Certification CE, EN13613 ,EN7
Seals Type Rubber Seals
Retainer material High Speed Nylon Cage
Limiting Speed Grease Lubrication: 34,000 RPM
Grade ABEC 11

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Chorme Steel Bearings,Titanium Plating
Structure: Deep Groove
Bore Size: 8 – 8.1 mm
Precision Rating: ABEC 11
Number of Row: Single Row
Limiting Speed: Grease Lubrication: 34,000 Rpm
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Common Signs of Wear or Damage in Ball Bearings that Indicate the Need for Replacement?

Ball bearings are subjected to wear and stress during operation, and over time, they may exhibit signs of damage or deterioration that warrant replacement. Recognizing these signs is crucial to prevent catastrophic failure and ensure safe and reliable operation. Here are the common signs of wear or damage in ball bearings:

  • Unusual Noise:

If you hear unusual grinding, clicking, or rumbling noises coming from the bearing during operation, it may indicate worn-out or damaged components. Unusual noise suggests that the bearing is no longer operating smoothly.

  • Vibration:

Excessive vibration in the machinery can be a sign of bearing wear. Vibrations can result from uneven wear, misalignment, or damaged components within the bearing.

  • Increased Temperature:

Higher operating temperatures than usual may indicate increased friction due to inadequate lubrication, wear, or other issues. Monitoring the bearing’s temperature can help identify potential problems.

  • Irregular Movement:

If you notice irregular movement, jerking, or sticking during rotation, it could be a sign that the bearing is no longer operating smoothly. This may be due to damaged rolling elements or raceways.

  • Reduced Performance:

If the machinery’s performance has decreased, it may be due to a compromised bearing. Reduced efficiency, increased energy consumption, or a decline in overall performance could be indicators of bearing wear.

  • Visible Wear or Damage:

Inspect the bearing for visible signs of wear, such as pitting, scoring, or discoloration on the rolling elements or raceways. Severe wear or damage is a clear indication that the bearing needs replacement.

  • Leakage or Contamination:

If there is evidence of lubricant leakage, contamination, or the presence of foreign particles around the bearing, it suggests that the seal or shield may be compromised, leading to potential damage.

  • Looseness or Excessive Play:

If you can feel excessive play or looseness when manually moving the bearing, it could indicate worn-out components or misalignment.

  • Reduced Lifespan:

If the bearing’s expected lifespan is significantly shorter than usual, it may be due to inadequate lubrication, excessive loads, or improper installation, leading to accelerated wear.

  • Frequent Failures:

If the bearing is consistently failing despite regular maintenance and proper use, it could indicate a chronic issue that requires addressing, such as inadequate lubrication or misalignment.

It’s important to conduct regular inspections, monitor performance, and address any signs of wear or damage promptly. Replacing worn or damaged ball bearings in a timely manner can prevent further damage to machinery, reduce downtime, and ensure safe and efficient operation.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to support axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction, speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China OEM Wholesale Cheap ABEC 11 Skate 608 Deep Grove Skateboard Roller Ball Bearings   manufacturerChina OEM Wholesale Cheap ABEC 11 Skate 608 Deep Grove Skateboard Roller Ball Bearings   manufacturer
editor by CX 2024-04-09

China high quality China Manufacturer Radial Thrust Self-Aligning Deep Groove Angular Contact Insert Ball Bearings Units Cylindrical Tapered Spherical Needle Roller Bearings drive shaft bearing

Product Description

PRODUCT PICTURES


RELATED PRODUCTS

OUR SERVICES

We can provide manufacturing capabilities and services of regular bearings for you, or customized non-standard bearings as you required.

 BEARING:
  — Dimensions
  — Material
  — Tolerance standard

APPEARANCE:
  — Logo (Laser Marking)
  — Package Design

40+ YEARS EXPERIENCE 
CONTINUOUS AND STABLE DELIVERY OF PRODUCTS.

With over 40 years experience of the bearing manufacturing, we know how to make good bearings with less cost consistently and efficiently.

We use advanced CNC turning, grinding, and superfinishing machines to ensure high, stable, and accurate machining.  All of your goods, from the most economical category, to the highest rated category, will always be manufactured precisely to the standards you require.

OWN HEAT TREATMENT 
CONTROALLABLE COST AND QUALITY.

Heat treatment is 1 of the crucial processes to ensure high performance of bearing materials. Compared with other manufacturers, we can produce higher quality bearings at smaller cost, with a more flexible and controllable production schedule, and in a shorter time

We have 6 heat treatment production lines.

Bearings are heated uniformly, with small deformation and little/no oxidized decarburization, which can make them have high hardness, high fatigue resistance, good wear resistance, dimensional stability, and excellent mechanical strength.
 

OUTSTXIHU (WEST LAKE) DIS.  QUALITY
LOW NOISE, LOW FRICTION AND LONG LIFE.

All our products are characterized by low noise, low friction and long life.  This is due to our attention to the roundness, waviness and surface roughness of bearing raceway.

Our products fully meets the requirements of national and international standards according to the testing result of roughness, roundness, hardness, vibration noise, vibration velocity.

PACKING
PACKAGING THAT HELPS SELL.

1, Inner package
   Corrosion and Dust Proof PE plastic film  / bag packing + Tube packing, or Wrapping  tape for larger bearings.

2, Corrugated Individual Box
   Our attractive sales-helpful “3-JOYS” package, or as the design of your package.
3, Outer package
  Corrugated carton + Wooden pallet 

MODERN WELL-ORGANIZED WAREHOUSE

  · Constant temperature (20°C) and humidity (RH 52%) warehouse
  · Hundreds of models on hand, short delivery time.
 

HONOR & SYSTEM CERTIFICATES

EXHIBITION

SAMPLES POLICY 

 FREE SAMPLES AND SHIPPING

 We are happy to send you free samples of our bearings for field   testing. All transportation costs will be paid by us.

 Please note: Depending on the model and value of samples,   this policy may not apply!

 Please contact our sales staff for details.

TRANSPORTATION
FASTEST DELIVERY TO CUSTOMERS

CUSTOMERS FEEDBACK

PAYMENT TERMS 
To facilitate your payment, we offer a variety of options! 

    
 

FAQ

1, About the lead time.
 
This depends on several factors, like Is the production schedule tight? Is there a corresponding model in stock, and is there enough of this model in stock? How many pcs of that model would be ordered?
Simply speaking, based on a 20′ GP container load:

If the model your Preferred is Sufficient stock Lead Time
Regular models YES Within 7 days
Regular models NO Within 30 days
Non-regular model NO About 50 days

For accurate estimate, please contact with our sale stuff. Thanks.

2, Minimum order quantity. 
  

Even just ONE piece of bearing is ok for us.

  
3, If you don’t know which model is the right choice…
  

We would like to give you some advise if you like, according to the real situation and demand of your local market. Our purpose is to help you to get proper and right models for your customers, so that you would make a better sales and income finally.

4, Factory Inspection

We surely would welcome you or your representatives to come to our plants or working offices to take a good look and chat with our hardworking CZPT employees. Ask our sales stuff and she/he will arrange that for you.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Non-Aligning Bearing
Separated: Unseperated/Seperated
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

How do Ceramic Ball Bearings Compare to Traditional Steel Ball Bearings in Terms of Performance?

Ceramic ball bearings and traditional steel ball bearings have distinct characteristics that can impact their performance in various applications. Here’s a comparison of how these two types of bearings differ in terms of performance:

  • Material Composition:

Ceramic Ball Bearings:

Ceramic ball bearings use ceramic rolling elements, typically made from materials like silicon nitride (Si3N4) or zirconium dioxide (ZrO2). These ceramics are known for their high hardness, low density, and resistance to corrosion and wear.

Traditional Steel Ball Bearings:

Traditional steel ball bearings use steel rolling elements. The type of steel used can vary, but common materials include chrome steel (52100) and stainless steel (440C). Steel bearings are known for their durability and strength.

  • Friction and Heat:

Ceramic Ball Bearings:

Ceramic bearings have lower friction coefficients compared to steel bearings. This results in reduced heat generation during operation, contributing to higher efficiency and potential energy savings.

Traditional Steel Ball Bearings:

Steel bearings can generate more heat due to higher friction coefficients. This can lead to increased energy consumption in applications where efficiency is crucial.

  • Weight:

Ceramic Ball Bearings:

Ceramic bearings are lighter than steel bearings due to the lower density of ceramics. This weight reduction can be advantageous in applications where minimizing weight is important.

Traditional Steel Ball Bearings:

Steel bearings are heavier than ceramic bearings due to the higher density of steel. This weight may not be as critical in all applications but could impact overall equipment weight and portability.

  • Corrosion Resistance:

Ceramic Ball Bearings:

Ceramic bearings have excellent corrosion resistance, making them suitable for applications in corrosive environments, such as marine or chemical industries.

Traditional Steel Ball Bearings:

Steel bearings are susceptible to corrosion, especially in harsh environments. Stainless steel variants offer improved corrosion resistance but may still corrode over time.

  • Speed and Precision:

Ceramic Ball Bearings:

Ceramic bearings can operate at higher speeds due to their lower friction and ability to withstand higher temperatures. They are also known for their high precision and low levels of thermal expansion.

Traditional Steel Ball Bearings:

Steel bearings can operate at high speeds as well, but their heat generation may limit performance in certain applications. Precision steel bearings are also available but may have slightly different characteristics compared to ceramics.

  • Cost:

Ceramic Ball Bearings:

Ceramic bearings are generally more expensive to manufacture than steel bearings due to the cost of ceramic materials and the challenges in producing precision ceramic components.

Traditional Steel Ball Bearings:

Steel bearings are often more cost-effective to manufacture, making them a more economical choice for many applications.

In conclusion, ceramic ball bearings and traditional steel ball bearings offer different performance characteristics. Ceramic bearings excel in terms of low friction, heat generation, corrosion resistance, and weight reduction. Steel bearings are durable, cost-effective, and widely used in various applications. The choice between the two depends on the specific requirements of the application, such as speed, precision, corrosion resistance, and budget considerations.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China high quality China Manufacturer Radial Thrust Self-Aligning Deep Groove Angular Contact Insert Ball Bearings Units Cylindrical Tapered Spherical Needle Roller Bearings   drive shaft bearingChina high quality China Manufacturer Radial Thrust Self-Aligning Deep Groove Angular Contact Insert Ball Bearings Units Cylindrical Tapered Spherical Needle Roller Bearings   drive shaft bearing
editor by CX 2024-04-03

China factory Bearings Roller Ball Bearing Heavy Duty Insert Bearings Pillow Blcok Bearings with Chrome Steel Gcr15 UCP208 with Good quality

Product Description

Product Description

Detailed Photos

Packaging & Shipping

Company Profile

ZheJiang CZPT Metal Co., Ltd. is located in HangZhou, ZheJiang Province,which is founded in 2571.

 Mainly engaged in the production and sales of auto parts. For the automobile after-sales maintenance market to provide a complete variety of high-quality parts products, the annual sales of 30 million US dollars, the products are exported to the United States, Europe, Russia, Southeast Asia, the Middle East and other dozens of countries and regions, enjoy a high reputation in the domestic and foreign markets.

It can provide professional solutions and is a trusted supplier in the automotive aftermarket. The company has passed the “three system” certification of quality, environment and occupational CZPT and safety. Scientific management system, first-class production testing equipment, exquisite technology to ensure product quality.

Certifications

FAQ

Q1: How many the MOQ of your company?
A: Our company MOQ is 1pcs.

Q2: Could you accept OEM and customize?
A:YES, we can customize for you according to sample or drawing.

Q3: Could you supply sample for free?
A: Yes, we can supply sample for free, but need our customer afford freight.

Q4 : Does your factory have CE?
A: Yes, we have ISO 9001:2008, and SASO. If you want other CE, we can do for you.

Q5: Is it your company is factory or Trade Company?
A: We have our own factory; our type is factory + trade.

Q6:  What time the guarantee of your bearing quality guarantee period?
A: 6 months ,Customer need supply photos and send bearing back.

Q7: Could you tell me the payment term of your company can accept?
A: T/T, Western Union, PayPal, T/T, L/C.

Q8: Could you tell me the delivery time of your goods?
A: 7-15 days , mostly base on your order quantity.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Separated
Feature: Vacuum, Magnetically, Corrosion Resistant, High Temperature, High Speed
Rows Number: Single
Raceway: Crowned Raceway
Material: Cast Iron
Samples:
US$ 2.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

How do Ball Bearings Differ from Other Types of Bearings like Roller Bearings?

Ball bearings and roller bearings are two common types of rolling-element bearings, each with distinct designs and characteristics. Here’s a comparison of ball bearings and roller bearings:

  • Design:

Ball Bearings: Ball bearings use spherical balls to separate and reduce friction between the bearing’s inner and outer rings. The balls enable rolling motion and smooth contact, minimizing friction.

Roller Bearings: Roller bearings, as the name suggests, use cylindrical or tapered rollers instead of balls. These rollers have larger contact areas, distributing loads over a broader surface.

  • Friction and Efficiency:

Ball Bearings: Due to the point contact between the balls and the rings, ball bearings have lower friction and are more efficient at high speeds.

Roller Bearings: Roller bearings have a larger contact area, resulting in slightly higher friction compared to ball bearings. They are more suitable for heavy-load applications where efficiency is prioritized over high speeds.

  • Load Capacity:

Ball Bearings: Ball bearings excel at handling light to moderate loads in both radial and axial directions. They are commonly used in applications where smooth rotation and low friction are important.

Roller Bearings: Roller bearings have a higher load-carrying capacity than ball bearings. They can support heavier radial and axial loads and are preferred for applications with significant loads or impact forces.

  • Variability:

Ball Bearings: Ball bearings come in various designs, including deep groove, angular contact, and thrust ball bearings, each suitable for different applications.

Roller Bearings: Roller bearings have diverse types, including cylindrical, spherical, tapered, and needle roller bearings, each optimized for specific load and motion requirements.

  • Speed Capability:

Ball Bearings: The reduced friction in ball bearings makes them suitable for high-speed applications, such as electric motors and precision machinery.

Roller Bearings: Roller bearings can handle higher loads but are generally better suited for moderate to low speeds due to slightly higher friction.

  • Applications:

Ball Bearings: Ball bearings are used in applications where smooth motion, low friction, and moderate loads are essential, such as electric fans, bicycles, and some automotive components.

Roller Bearings: Roller bearings find applications in heavy machinery, construction equipment, automotive transmissions, and conveyor systems, where heavier loads and durability are crucial.

In summary, ball bearings and roller bearings differ in their design, friction characteristics, load capacities, speed capabilities, and applications. The choice between them depends on the specific requirements of the machinery and the type of loads and forces involved.

China factory Bearings Roller Ball Bearing Heavy Duty Insert Bearings Pillow Blcok Bearings with Chrome Steel Gcr15 UCP208   with Good qualityChina factory Bearings Roller Ball Bearing Heavy Duty Insert Bearings Pillow Blcok Bearings with Chrome Steel Gcr15 UCP208   with Good quality
editor by CX 2024-03-24

China factory Motor Parts Spherical Roller Ball Bearings bearing assembly

Product Description

Spherical Roller Bearings

Feature:
Spherical rollers are put between the spherical raceway on the outer ring and the 2 grooves on the inner ring for these bearings. Since the center of the arc raceway on the outer ring is the same as the center of the whole bearing arrangement, these bearings are self-aligned and automatcally adjust the bending of the shaft and housing and the eccentricity.
The bearings can carry radial load and axial load in double directions. The especial radial load carrying capability makes these bearings suitable for heavy load and shock load carrying.
The tappered bore with adapter sleeve or withdrawal sleeve makes the mounting and dismounting on the shaft quite convenient.

Cage:
pressed steel cages and machined cages
Applications:
rolling mill, paper-making machine, engineering facility,crusher,printing machine,vibrator,decelerator, lorry, woodworker, retarder used in other industrial usage.
Self-aligning ball bearings
Feature:
The spherical form of the raceway surface of the outer ring makes these bearings self-aligned.They can automatically adjust the misalignment caused by the bending of shaft or the housing or th eccentricity.

Applications:
These bearings are mainly used in the transmission axles of wood processing machines \textile machines\drive (driven) shafts\conveyers\ and roll shafts and so on.

Information needed for ball bearing inquiry
It will be better if customer could send us detailed drawing including below information.
1.Ball bearing model number
2. Ball bearing dimension
3. Ball bearing application
4. Required quantity
5. Other technical requirement. 

With good service, unique philosophy, professional team and reliable quality, we win the worldwide customers’ confidence gradually. We directly and indirectly supply our products to more than 50 countries .

Customerized service 1. Customized product design and manufacturing
2. Customized trHangZhou
3.Technical suggestions
After-sales service 1. Warranty Period: 12 month usually
2. Overseas service center available

3. Engineers available to service overseas

Established in 2571, CZPT is a company devoted in the field of electric motors manufacturing, providing one-stop service for its customers.

NIDE has 3 main business divisions.
The first division is to provide different kinds of motor manufacturing machines, it is our Main business, including stand along machine, fully-auto complete line for armature and stator production, and the motor assembly line.
The second division is to supply the full range of motor components such as commutator, ball bearing, carbon brush, insulation paper, shaft, magnet, fan, motor cover, etc.
The third division is to provide technical support and consulting, project support and turn-key service for some motor manufacturing.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: Customized
Aligning: Customized
Separated: Customized
Rows Number: Customized
Load Direction: Customized
Material: Customized

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

How do Ball Bearings Differ from Other Types of Bearings like Roller Bearings?

Ball bearings and roller bearings are two common types of rolling-element bearings, each with distinct designs and characteristics. Here’s a comparison of ball bearings and roller bearings:

  • Design:

Ball Bearings: Ball bearings use spherical balls to separate and reduce friction between the bearing’s inner and outer rings. The balls enable rolling motion and smooth contact, minimizing friction.

Roller Bearings: Roller bearings, as the name suggests, use cylindrical or tapered rollers instead of balls. These rollers have larger contact areas, distributing loads over a broader surface.

  • Friction and Efficiency:

Ball Bearings: Due to the point contact between the balls and the rings, ball bearings have lower friction and are more efficient at high speeds.

Roller Bearings: Roller bearings have a larger contact area, resulting in slightly higher friction compared to ball bearings. They are more suitable for heavy-load applications where efficiency is prioritized over high speeds.

  • Load Capacity:

Ball Bearings: Ball bearings excel at handling light to moderate loads in both radial and axial directions. They are commonly used in applications where smooth rotation and low friction are important.

Roller Bearings: Roller bearings have a higher load-carrying capacity than ball bearings. They can support heavier radial and axial loads and are preferred for applications with significant loads or impact forces.

  • Variability:

Ball Bearings: Ball bearings come in various designs, including deep groove, angular contact, and thrust ball bearings, each suitable for different applications.

Roller Bearings: Roller bearings have diverse types, including cylindrical, spherical, tapered, and needle roller bearings, each optimized for specific load and motion requirements.

  • Speed Capability:

Ball Bearings: The reduced friction in ball bearings makes them suitable for high-speed applications, such as electric motors and precision machinery.

Roller Bearings: Roller bearings can handle higher loads but are generally better suited for moderate to low speeds due to slightly higher friction.

  • Applications:

Ball Bearings: Ball bearings are used in applications where smooth motion, low friction, and moderate loads are essential, such as electric fans, bicycles, and some automotive components.

Roller Bearings: Roller bearings find applications in heavy machinery, construction equipment, automotive transmissions, and conveyor systems, where heavier loads and durability are crucial.

In summary, ball bearings and roller bearings differ in their design, friction characteristics, load capacities, speed capabilities, and applications. The choice between them depends on the specific requirements of the machinery and the type of loads and forces involved.

China factory Motor Parts Spherical Roller Ball Bearings   bearing assemblyChina factory Motor Parts Spherical Roller Ball Bearings   bearing assembly
editor by CX 2024-03-05

China Hot selling China Bearings 608 2RS Steel 608z Deep Groove Ball Bearing 608 for Roller Skates or Skateboard deep groove ball bearing

Product Description

Introduction and use of bearings

 

Deep groove ball bearing is simple in structure and convenient in use.

It is the bearing with the largest production scale and the

widest application range.

Widely used in automobiles, household appliances, machine tools, motors, pumps, agricultural machinery, textile machinery and many other fields.

Product Name

china bearings 608 2RS steel 608z deep groove ball bearing 608 for roller skates or skateboard

Size

35x80x21mm

Material

304 stainless steel

Precision

P0 P5 P6

Sealing

ZZ/RS

Delivery date

Normally ready goods and stock within 3-15 days

Payment terms

A:100% TT
B: 30% T/T in advance .70% balance payment before shipment
C:Western union
D:PAYPAL

Application

Auto, tractor ,machine tool, electric machine, water pump, agricultural machinery and textile machinery

Package

Industrial package or according to buyers’ requirement

Details

Deep groove ball bearings are simple, easy to use, is the largest production volume, most widely used of a class of bearings. 

It is mainly used for a bear radial load, but also bear certain axial load. 

When the bearing radial clearance increased when the function with angular contact bearings can bear large axial load.

Special properties

1. High accuracy
2. Low noise
3. Low weight
4. Can be customized according to your needs
5. Can provide small & miniature standard and non-standard ball bearings.

Why Choose Us ?

1. 420 stainless steel for inner ring and outer ring

2. 304 stainless steel cage

3. 420 stainless steel balls

4. Dry lube/ Grease/ OilRelated Products

5. Rubber seals/ ZZ metal shields

6. High speed

7. Long spin time

8. Low friction

9. Rustproof and corrosion resistance

10. Durable

11. Easy to maintenance
Related Products

FAQ

Q1: Are you a Manufacturer or trading company?
Answer: We are professional manufactuer of bearings since 1998 with ISO standards.

 

Q2: Can I get a sample to check out the quality?
Answer: Sure, free samples are available for stock products if you can pay for the shipping cost.

 

Q3: Can you do OEM to print my logo/brand on the products?
Answer: Yes, we can print your logo/brand on the products, you just need to send us your logo/brand files, we will show you how it looks like.We can also make custom package to your request.

 

Q4: How soon can I expect my order to be finished?
Answer: We have regular stock for standard bearings that can be shipped right after your payment. It will take 15-60 days for new production order,which depends on your order quantity.

 

Q5: What if I receive defective products for my order?
Answer: All our bearings are 100% inspected strictly before packing. If any defective products received, please provide photos and video to show us the problem and help us improve the quality. New products will be sent to you as replacement if the probelm is product quality.
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Precision Rating: P6
Bore Size: 7.995 – 8 mm
Seals Type: DDU, Z, Zz, 2RS, RS, Open
Quality: P0.P6.P5
Cage: Nylon Cage
Lubrication: Oil Grease
Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

How do Ceramic Ball Bearings Compare to Traditional Steel Ball Bearings in Terms of Performance?

Ceramic ball bearings and traditional steel ball bearings have distinct characteristics that can impact their performance in various applications. Here’s a comparison of how these two types of bearings differ in terms of performance:

  • Material Composition:

Ceramic Ball Bearings:

Ceramic ball bearings use ceramic rolling elements, typically made from materials like silicon nitride (Si3N4) or zirconium dioxide (ZrO2). These ceramics are known for their high hardness, low density, and resistance to corrosion and wear.

Traditional Steel Ball Bearings:

Traditional steel ball bearings use steel rolling elements. The type of steel used can vary, but common materials include chrome steel (52100) and stainless steel (440C). Steel bearings are known for their durability and strength.

  • Friction and Heat:

Ceramic Ball Bearings:

Ceramic bearings have lower friction coefficients compared to steel bearings. This results in reduced heat generation during operation, contributing to higher efficiency and potential energy savings.

Traditional Steel Ball Bearings:

Steel bearings can generate more heat due to higher friction coefficients. This can lead to increased energy consumption in applications where efficiency is crucial.

  • Weight:

Ceramic Ball Bearings:

Ceramic bearings are lighter than steel bearings due to the lower density of ceramics. This weight reduction can be advantageous in applications where minimizing weight is important.

Traditional Steel Ball Bearings:

Steel bearings are heavier than ceramic bearings due to the higher density of steel. This weight may not be as critical in all applications but could impact overall equipment weight and portability.

  • Corrosion Resistance:

Ceramic Ball Bearings:

Ceramic bearings have excellent corrosion resistance, making them suitable for applications in corrosive environments, such as marine or chemical industries.

Traditional Steel Ball Bearings:

Steel bearings are susceptible to corrosion, especially in harsh environments. Stainless steel variants offer improved corrosion resistance but may still corrode over time.

  • Speed and Precision:

Ceramic Ball Bearings:

Ceramic bearings can operate at higher speeds due to their lower friction and ability to withstand higher temperatures. They are also known for their high precision and low levels of thermal expansion.

Traditional Steel Ball Bearings:

Steel bearings can operate at high speeds as well, but their heat generation may limit performance in certain applications. Precision steel bearings are also available but may have slightly different characteristics compared to ceramics.

  • Cost:

Ceramic Ball Bearings:

Ceramic bearings are generally more expensive to manufacture than steel bearings due to the cost of ceramic materials and the challenges in producing precision ceramic components.

Traditional Steel Ball Bearings:

Steel bearings are often more cost-effective to manufacture, making them a more economical choice for many applications.

In conclusion, ceramic ball bearings and traditional steel ball bearings offer different performance characteristics. Ceramic bearings excel in terms of low friction, heat generation, corrosion resistance, and weight reduction. Steel bearings are durable, cost-effective, and widely used in various applications. The choice between the two depends on the specific requirements of the application, such as speed, precision, corrosion resistance, and budget considerations.

ball bearing

How does Lubrication Impact the Performance and Lifespan of Ball Bearings?

Lubrication plays a critical role in the performance and lifespan of ball bearings. Proper lubrication ensures smooth operation, reduces friction, minimizes wear, and prevents premature failure. Here’s how lubrication impacts ball bearings:

  • Friction Reduction:

Lubrication creates a thin film between the rolling elements (balls) and the raceways of the bearing. This film reduces friction by separating the surfaces and preventing direct metal-to-metal contact. Reduced friction results in lower energy consumption, heat generation, and wear.

  • Wear Prevention:

Lubricants create a protective barrier that prevents wear and damage to the bearing’s components. Without proper lubrication, the repeated rolling and sliding of the balls against the raceways would lead to accelerated wear, surface pitting, and eventual failure.

  • Heat Dissipation:

Lubricants help dissipate heat generated during operation. The rolling elements and raceways can generate heat due to friction. Adequate lubrication carries away this heat, preventing overheating and maintaining stable operating temperatures.

  • Corrosion Resistance:

Lubrication prevents moisture and contaminants from coming into direct contact with the bearing’s surfaces. This helps protect the bearing against corrosion, rust, and the formation of debris that can compromise its performance and longevity.

  • Noise Reduction:

Lubricated ball bearings operate quietly because the lubricant cushions and dampens vibrations caused by the rolling motion. This noise reduction is crucial in applications where noise levels need to be minimized.

  • Seal Protection:

Lubricants help maintain the effectiveness of seals or shields that protect the bearing from contaminants. They create a barrier that prevents particles from entering the bearing and causing damage.

  • Improved Efficiency:

Properly lubricated ball bearings operate with reduced friction, leading to improved overall efficiency. This is especially important in applications where energy efficiency is a priority.

  • Lifespan Extension:

Effective lubrication significantly extends the lifespan of ball bearings. Bearings that are properly lubricated experience less wear, reduced fatigue, and a lower likelihood of premature failure.

  • Selection of Lubricant:

Choosing the right lubricant is essential. Factors such as speed, temperature, load, and environmental conditions influence the choice of lubricant type and viscosity. Some common lubricant options include grease and oil-based lubricants.

  • Regular Maintenance:

Regular lubrication maintenance is crucial to ensure optimal bearing performance. Bearings should be inspected and relubricated according to manufacturer recommendations and based on the application’s operating conditions.

In summary, proper lubrication is essential for the optimal performance, longevity, and reliability of ball bearings. It reduces friction, prevents wear, dissipates heat, protects against corrosion, and contributes to smooth and efficient operation in various industrial and mechanical applications.

China Hot selling China Bearings 608 2RS Steel 608z Deep Groove Ball Bearing 608 for Roller Skates or Skateboard   deep groove ball bearingChina Hot selling China Bearings 608 2RS Steel 608z Deep Groove Ball Bearing 608 for Roller Skates or Skateboard   deep groove ball bearing
editor by CX 2024-02-04

China Hot selling CZPT ISO9000 Quality Taper Roller Bearings for Mining Petrochemical Machines 30212 ball bearing

Product Description

ZYS ISO9000 Quality Taper Roller Bearings for Mining Petrochemical Machines 35712
 

Tapered roller bearings refer to the radial thrust rolling bearings whose rolling body is a tapered roller. There are 2 types of small Angle and large Angle. The taper Angle is mainly subjected to radial and axial combined loads, which are usually in double use and reverse installation. The inner and outer seat rings can be installed separately, and the radial and axial clearance can be adjusted during installation and use. The large cone Angle mainly bears the combined axial and radial load, which is not used to bear the pure axial load separately.

Technical parameters of taper roller bearings:

BEARING NO. d D T
35712 15 35 11.75
35713 17 40 13.25
35714 20 47 15.25
35715 25 52 16.25
35716 30 62 17.25
35717 35 72 18.25
35718 40 80 19.25
35719 45 85 20.75
35710 50 90 21.75
35711 55 100 22.75
35712 60 110 23.75
35713 65 120 24.75
35714 70 125 26.25
35715 75 130 27.25
35716 80 140 28.25
35717 85 150 30.5
35718 90 160 32.5
35719 95 170 34.5
35710 100 180 37
35711 105 190 39
35712 110 200 41
35714 120 215 43.5
35716 130 230 43.75
35718 140 250 45.75
35710 150 270 49
35712 160 290 52
35714 170 310 57
35716 180 320 57
35718 190 340 60
35710 200 360 64
       
30302 15 42 14.25
30303 17 47 15.25
30304 20 52 16.25
30305 25 62 18.25
30306 30 72 20.75
30307 35 80 22.75
30308 40 90 25.25
30309 45 100 27.25
3571 50 110 29.25
3571 55 120 31.5
3571 60 130 33.5
3571 65 140 36
3571 70 150 38
3571 75 160 40
3 0571 80 170 42.5
3 0571 85 180 44.5
3 0571 90 190 46.5
3571 95 200 49.5
30320 100 215 51.5
30321 105 225 53.5
30322 110 240 54.5
30324 120 260 59.5
30326 130 280 63.75
30328 140 300 67.75
30330 150 320 72
3571 260 540 114

Designation d D T B C Load Ratings Fatigue Load Speed Ratings Mass
Limit Lubrication
  mm Dynamic [C] Static [C0] Pu(kN) Grease Oil Kg.
32205 25 52 19,25 18 15 45.7 48.4 5.12 10000 13000 0.19
32206 30 62 21,25 20 17 64.4 62.7 6.93 9000 11000 0.28
32207 35 72 24,25 23 19 84.2 85.8 9.35 8000 9500 0.43
32208 40 80 24,75 23 19 93.5 95.2 10.78 7000 8500 0.53
32213 65 120 32,75 31 27 166.1 212.3 25.08 4000 5600 1.5
32214 70 125 33,25 31 27 172.7 228.8 26.95 3800 5300 1.6
32215 75 130 33,25 31 27 177.1 233.2 26.95 3600 5000 1.7
32216 80 140 35,25 33 28 205.7 269.5 31.35 3400 4500 2.05
32217 85 150 38,5 36 30 233.2 313.5 36.85 3200 4300 2.6
32218 90 160 42,5 40 34 276.1 374 42 3000 4000 3.35
32219 95 170 45,5 43 37 309.1 429 47 2800 3800 4.05
32220 100 180 49 46 39 350.9 484 53 2600 3600 4.9
32221 105 190 53 50 43 393.8 561 61 2600 3400 6
32222 110 200 56 53 46 442.2 627 67 2400 3200 7.1
32224 120 215 61,5 58 50 514.8 764.5 79 2200 3000 9.15
32226 130 230 67,75 64 54 605 913 94 2000 2800 1.15
32228 140 250 71,75 68 58 708 1100 110 1900 2600 1.45
32230 150 270 77 73 60 811 1254 123 1700 2400 17.5
32232 160 290 84 80 67 968 1540 145 1600 2200 2.55
32234 170 310 91 86 71 1111 1793 165 1500 2000 28.5
32236 180 320 91 86 71 1111 1793 165 1400 1900 29.5
32240 200 360 104 98 82 1331 2200 198 1300 1700 42.5
32244 220 400 114 108 90 1771 2970 255 1100 1500 60
32248 240 440 127 120 100 1969 3685 303 1000 1400 83.5
32252 260 480 137 130 106 2420 4015 330 900 1200 105
32260 300 540 149 140 115 3571 5225 402 800 1100 140

 

Model Number  d(mm) D(mm) W(mm) Brand 
33215 3007215E 75 130 41 ZYS
33214 3007214E 70 125 41 ZYS
33213 3007213E 65 120 41 ZYS
33212 30571E 60 110 38 ZYS
33211 3007211E 55 100 35 ZYS
33210 3007210E 50 90 32 ZYS
33209 3007209E 45 85 32 ZYS
33208 3007208E 40 80 32 ZYS
33207 3007207E 35 72 28 ZYS
33205 3007205E 25 52 22 ZYS
33571 30 0571 2E 110 170 47 ZYS
33571 30 0571 1E 105 160 43 ZYS
33571 30 0571 0E 100 150 39 ZYS
33019 35719E 95 145 39 ZYS
33015 35715E 75 115 31 ZYS
33013 35713E 65 100 27 ZYS
33012 35712E 60 95 27 ZYS
32314 7614E 70 150 54 ZYS
32313 7613E 65 140 51 ZYS
32312 7612E 60 130 48.5 ZYS
32311 7611E 55 120 45.5 ZYS
32310 7610E 50 110 42.25 ZYS
32309 7609E 45 100 38.25 ZYS
32308 7608E 40 90 35.25 ZYS
32307 7607E 35 80 32.75 ZYS
32306 7606E 30 72 28.75 ZYS
32305 7605E 25 62 25.25 ZYS
32304 7604E 20 52 22.25 ZYS
32224 7524E 120 215 61.5 ZYS
32222 7522E 110 200 56 ZYS
32221 7521E 105 190 53 ZYS
32220 7520E 100 180 49 ZYS
32219 7519E 95 170 45.5 ZYS
32218 7518E 90 160 42.5 ZYS
32217 7517E 85 150 38.5 ZYS
32216 7516E 80 140 35.25 ZYS
32215 7515E 75 130 33.25 ZYS
32214 7514E 70 125 33.25 ZYS
32213 7513E 65 120 32.75 ZYS
32212 7512E 60 110 29.75 ZYS
32211 7511E 55 100 26.75 ZYS

The characteristics:
1. Enhance the interior design.
2. Special cage design.
3. Improve the accuracy and adjust the internal clearance.
4. Ring with locking slot design to prevent rotation.

ZYS ADVANTAGES
 HangZhou Bearing Research Institute Co., Ltd. is a high-tech enterprise specializing in the development of “high-rank, precise, advanced, unique, special” bearing products for the key units in various fields of national economic construction. Its predecessor, HangZhou Bearing Research Institute, was established in 1958. It is the only state-level comprehensive research institute in China’s bearing industry. In 1999, it entered China National Machinery
 Industry Group Co., Ltd. and transformed into a science and technology enterprise.
We have total assets of 2.06 billion RMB, own one research and development center, 3 industrial bases and cover an area of more than 47 hectares. We have advanced bearing manufacturing equipments and world first-class testing equipments and have solid strength in manufacturing, measuring and testing of bearing and related components with high precision and high reliability. We have more than 380 technical staff of bearing related disciplines, thus we maintain a leading position in the aspects of bearing design, basic theoretical research, lubrication technology, metallic and non-metallic materials, testing and industry standards. 

ZYS Manufacturing capacity

ZYS QUALITY ASSURANCE

ZYS bearing products

FAQ:

Q: Are you trading company or manufacturer?
A: CZPT is bearing manufacturer, the only first-class comprehensive research institute in China bearing industry.

Q: How do you control quality of bearing?
A: CZPT has established quality control systems for each kind of bearing and spindle. All products and services passed ISO9001-2008 Quality Certificate.

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry for more information.

Q: How about the package?
A: Industrial packing in general condition (Plastic tube+ carton+ pallet). Accept design package when OEM.

Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.

Q: How about the shipping?
A: We can arrange the shipment or you may have the forwarder.

Q: Is sample avaiable?
A: Yes, sample order is acceptable.

Q: Can we use our own LOGO or design on bearings?
A: Yes. OEM is acceptable. We can design the bearing with your requirements and use your own LOGO and package design.

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Bearing Steel
Spherical: Non-Aligning Bearings
Load Direction: Axial Bearing
Samples:
US$ 9.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bearing

Types of Ball Bearings

If you’re looking to purchase a new ball bearing, there are many different types available. Learn about Single-row designs, Ceramic hybrid bearings, and Self-aligning ball bearings. You can also choose from stainless steel or single-row designs. Then, read about the different types of materials available to you. You’ll have an easier time making a decision. After all, you won’t have to worry about maintaining your new ball bearing, since it will be maintained by your supplier.

Single-row designs

Ball bearings with a single-row design have a high load-carrying capacity. They are used in applications where high loads must be handled smoothly. A single-row design is a good choice when the material’s properties require high load-carrying capacity but limited axial load capability. Single-row designs use two bearings with similar design features, but they have different mounting methods. Single-row designs can be adjusted either against one another to accommodate axial loads.
The single-row design is suitable for high-speed applications, but also has some disadvantages. The contact angle a is the angle between the radial plane and contact line. The larger the angle, the higher the axial load carrying capacity of the bearing. Single-row angular contact ball bearings are suitable for higher axial forces. Single-row angular contact ball bearings have a single-row design and support high axial forces in one direction. Single-row ball bearings are available in both pressed steel and machined steel cages.
Angular contact ball bearings with a single row feature a cage made of fiber-glass reinforced polyamide 66. These are available in diameters up to 130 mm. Four-point angular contact ball bearings use brass, steel, or brass plate. They have good running properties and a low coefficient of linear expansion. Single-row designs are easy to mount and are widely available. Alternatively, they can be mounted with a universal match design, which allows them to be easily adjusted.
One-row angular contact ball bearings are generally not suitable for angular misalignments because they are unsuitable for compensation of angular misalignments. Misalignments cause internal forces in the bearing which reduce its radial load capacity and life expectancy. This type of bearing is not suitable for adjacent mounting as it increases the chances of misalignment. However, it is a suitable choice for applications where only one bearing is required per bearing position.

Ceramic hybrid bearings

While all-ceramic bearings are limited to very specialized applications, Si3N4-based hybrid bearings are finding use in a wide range of high-speed machines. Compared to steel, ceramics are less susceptible to centrifugal forces, which are directly proportional to the mass of the balls. Because Si3N4 replacement balls have a lower density than steel, these bearings reduce the stress placed on the outer race.
The benefits of hybrid bearings are clear: they allow for higher speeds and loads than full-ceramic bearings, and they require no lubrication. Because of their many benefits, many industrial equipment operators are switching to these innovative bearings. CBR is one company that specializes in ceramic hybrid bearings and can help you find the best product for your application. If you are thinking about purchasing ceramic bearings for your next machine, here are some things you need to know about them.
A ceramic ball bearing surface has an extremely low coefficient of friction, which is important for applications that require low friction and high speeds. Ceramic balls also have a higher hardness than steel balls, which increases their life. In addition to this, ceramic hybrid bearings have superior thermal properties, generating less heat even when spinning at high speeds. These properties make ceramic hybrid bearings an ideal choice for high-speed machinery, especially electric motors. They are also suitable for applications that operate under water.
A ceramic ball hybrid bearing is much less susceptible to temperature fluctuations and wear. Because they are essentially indestructible, ceramic balls do not generate wear particles from the adhesive wear. They can run at significantly higher speeds than steel balls. Ceramic balls are also more resistant to moisture. For this reason, grease is a recommended lubricant in most ceramic bearing applications. These lubricants offer superior protection against moisture and corrosion. Further, they are available in many types.
bearing

Self-aligning ball bearings

A self-aligning ball bearing is one type of self-aligning bearing. These bearings are recommended for use in flex shaft systems. Their self-aligning feature prevents them from misaligning when in use. They can be used in both single and multiple-joint systems. In addition to self-aligning ball bearings, these units also feature flex shafts.
These self-aligning ball bearings come in a variety of configurations, including cylindrical, round, tapered, and straight bore. Their inner ring is tapered to meet specific tolerances. They are suitable for operating temperatures ranging from -30°F to 120°F. Their wide range of applications allows them to be used in general machinery, precision instruments, and low noise motors. In addition, they are available in a variety of outside diameters, widths, and internal clearances.
Self-aligning ball bearings have two rows of balls and one common sphered raceway in the outer ring. This enables them to automatically compensate for angular misalignment, which may be caused by machining and assembly errors or deflections. Compared to spherical roller bearings, these self-aligning ball bearings generate less friction. They run cooler even at high speeds. Self-aligning ball bearings also offer free engineering support.
Self-aligning ball bearings are designed for difficult shaft alignment. They are double-row, self-retaining units, with cylindrical or tapered bores. These bearings are available in open and sealed designs, and can also be used in applications with misalignment. They are also available with an outer ring that rotates in relation to the inner ring. When it comes to shaft misalignment, self-aligning ball bearings are a great solution.

Stainless steel

Stainless steel is a metal that resists corrosion and is highly durable. Its corrosion-resistant and water-resistance properties make it a good choice for bearings in food and marine applications. Additionally, stainless steel has hygienic benefits. Here are some of the benefits of stainless steel ball bearings. Read on to learn more about these amazing bearings! We’ve included some of the most common uses for stainless steel.
Hardness is important in a ball bearing. Steel uses the Rockwell C scale to measure hardness. A grade 25 steel ball bearing is accurate to 25 millionths of an inch, while a grade five ceramic bearing is less than a half-inch round. Although roundness is important, it shouldn’t be overemphasized, as the bearing surfaces may not be as accurate as the grade of the metal. And remember, a higher price tag doesn’t mean a better product.
Stainless steel ball bearings are available in a variety of alloys. The alloys used in manufacturing a stainless steel ball bearing vary in hardness, strength, and ductility. Stainless steel ball bearings have high corrosion-resistance properties. Additionally, they have long lubrication lives. These benefits make them a popular choice for industrial applications. These bearings are easy to maintain, reduce replacement costs, and offer corrosion resistance.
The NTN Sentinel Series is a premium line of stainless steel bearings. The solid lube is NSF H1 registered and prevents grease from leaching into food. It is also corrosion-resistant and doesn’t need to be coated. The seals and slinger create a water-resistant barrier between the steel ball and the lubricant. It also adds safety and security to the bearing.
bearing

Plastic balls

For applications where noise and weight are major concerns, plastic balls are ideal. These non-magnetic balls are ideal for MRI X-ray machines and sensors. They are also easy to lubricate, and are non-magnetic. A polymer ball bearing is the lightest of all three types. This makes them a good choice for many industries. Read on to learn more. This article will introduce some of the advantages of plastic balls for ball bearings.
Although ceramic ball bearings are more durable and offer many advantages, they are more expensive than plastic. Fortunately, plastic ball bearings offer a cheaper alternative. These bearings feature all-plastic races and cages. Depending on the application, plastic balls can be used in applications involving chemicals. In these cases, plastic ball bearings are available with a C160 grade, which is safe for use in temperatures below 176 deg F.
Medical devices often require precision specialty balls, which are made of glass, stainless steel, and plastic. These bearings must meet stringent cleanliness requirements. To meet the most stringent requirements, they must undergo ultrasonic cleaning. These bearings are available in plastic raceways, and are also available with glass or stainless steel balls. Polyethylene balls are lightweight and can be used in a variety of applications. They can be ordered in different sizes and tolerances to meet specific requirements.
Plastic balls for ball bearings are often mounted into other parts, such as plastic wheels, pulleys, and housings. They can be seamlessly integrated into other parts of a machine, which reduces assembly time and improves affordability. One important advantage of plastic bearings is that they are rust-resistant. As such, they can be used in harsh environments without causing any damage. If a piece of equipment is exposed to extreme temperatures, polymers are the ideal choice.

China Hot selling CZPT ISO9000 Quality Taper Roller Bearings for Mining Petrochemical Machines 30212   ball bearingChina Hot selling CZPT ISO9000 Quality Taper Roller Bearings for Mining Petrochemical Machines 30212   ball bearing
editor by CX 2023-11-14

China supplier Cylindrical Roller Bearings Nj Type Nj202 Nj202e drive shaft bearing

Product Description

Cylindrical roller bearings High speed  low noise N NU NJ NUP 

Product Description

 

The cylindrical roller and raceway are linear contact bearings. Large load capacity, mainly bearing radial loads. The friction between the rolling element and the collar edge is small, suitable for high-speed rotation. According to the presence or absence of CZPT on the ring, it can be divided into single row cylindrical roller bearings such as NU, NJ, NUP, N, NF, and double row cylindrical roller bearings such as NNU and NN. The bearing is a separable structure with inner and outer rings.
Cylindrical roller bearings without retaining edges on the inner or outer rings can move relative to the axial direction, so they can be used as free end bearings. A cylindrical roller bearing with double CZPT on 1 side of the inner and outer rings, and a single rib on the other side of the ring, which can withstand a certain degree of axial load in 1 direction. Generally, steel plate stamped cages or copper alloy solid cages are used. But some also use polyamide shaped cages
.

 

Detailed Photos

Product Parameters

Type Roller
Structure cylindrical
clearance C2, C0, C3, C4, C5
Number of Row Double row
attribute Powerful factory
Material High quality bearing steel
Precision Rating P0 P6 P5 P4 p2
Seals Type open

Specifition

 

N type:
The inner ring has 2 integral flanges and the outer ring is without flanges. Axial displacement of the shaft with respect to the housing can be accommodated in both directions within the bearing itself. The bearings are therefore used as non-locating bearings.
NU type:
The outer ring of bearings of the NU design has 2 integral flanges and the inner ring is without flanges. Axial displacement of the shaft with respect to the housing can be accommodated in both directions within the bearing itself.
NJ type:
The outer ring has 2 integral flanges and the inner ring 1 integral flange. The bearings are therefore suitable for the axial location of a shaft in 1 direction.
NF type:
The outer ring has 1 integral flange and the inner ring 2 integral flanges.
NUP type:
The outer ring has 2 integral flanges and the inner ring 1 integral flange and 1 non-integral flange in the form of a loose flange ring. The bearings can be used as locating bearings, i.e. they can provide axial location for a shaft in both directions.
RN type:
No outer ring and the inner ring 2 integral flanges.
NN type:
NN type bearing without CZPT on outer ring,there is a wall in the midel of between both sides of inner ring. It can make shaft
relative bearing between the axial displacement generated in both directions.

Company Profile

ZheJiang Wangtai Bearing Co., Ltd. was founded in 2000 in ZheJiang , with its own production plant and sales as one. Independent marketing AOVE and WNTN brand high-quality bearings and related products. The company is committed to becoming the benchmark of Chinese bearing enterprises, with advanced and applicable technology, stable and reliable products, professional and thoughtful service, to provide users with more cost-effective solutions. The company mainly sells CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings and CZPT bearings. Products are widely used in: aviation, aerospace, metallurgy, iron and steel, mining, electric power, machinery manufacturing, printing, electronics, textile, food, chemical industry, automobile and many other fields. 
Enterprise spirit: integrity, gratitude, equality, mutual respect!

Packaging & Shipping

 

FAQ

Q: Why did you choose us?

A. We provide the best quality bearings with reasonable price, low friction, low noise and long service life.

B. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.

C. The best service provided by a well-trained international sales team.

Q: Do you accept small orders?

Surely, once your bearings are standard size bearings, even one, we will also accept.

Q: How long is your delivery time?

Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.

Q: Do you provide samples? Is it free or extra?

Yes, we can provide a small amount of free samples. Do you mind paying the freight?

Q: What should I do if I don’t see the type of bearings I need?

We have too many bearing series numbers. Sometimes we can’t put them all on web. Just send us the inquiry and we will be very happy to send you the bearing details.

Welcome to contact me anytime!

 

Rolling Body: Roller Bearings
The Number of Rows: Double
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Stainless Steel
Spherical: Aligning Bearings
Load Direction: Axial Bearing

bearing

Advantages of Ball Bearings

What is a ball bearing? A ball bearing is a type of rolling-element bearing that utilizes balls to maintain separation between two bearing races. Its contact angle between the balls and the races helps it reduce friction between the loads. There are several advantages to ball bearings, including their ability to withstand water. Read on to learn more. Here are a few of the benefits. You can use them in your daily life, from your car to your boat.

Ball bearings reduce friction between loads

Ball bearings reduce friction between loads by constraining the relative motion between moving parts. These bearings consist of a ring of small metal balls that reduce friction between moving objects. The name “ball bearing” is derived from the verb “to bear.” The lubricant within the bearing reduces friction between moving particles. In a machine, ball bearings reduce friction between moving parts and improve linear motion around a fixed axis.
These bearings are commonly used to reduce friction between loads in rotating machines. They have two tracks, one fixed to the rotating part and one stationary. The rolling balls of a ball bearing have lower friction than flat surfaces. Because of this, they are useful for bar stool bearings. They reduce friction between surfaces and maintain the separation between bearing races. Hence, minimal surface contact is possible. Ball bearings have the potential to increase the life of machines and reduce energy consumption.
Ball bearings can be as small as a wrist watch or as large as an industrial motor. They function the same way, reducing friction between loads. Among their many uses, ball bearings are essential for everyday operations. Clocks, air conditioners, fans, and automobile axles all use ball bearings. In fact, anything that uses a motor requires ball bearings. It’s no wonder they’re gaining popularity in industries and everyday life.

They support radial and axial loads

Radial ball bearings are used primarily for radial loads, but they also have a capacity for axial load. This load capacity is usually given as a percentage of the radial load rating. Axial load capacity is generally greater for a bearing with a larger difference between the inner and outer ring diameters. The axial load capacity is also affected by the bearing’s raceway depth, with shallow raceways being more suitable for heavier axial loads.
The two main types of axial and radial loads are defined by their orientation. Axial loads apply forces in one direction while radial loads act on the opposite direction. In both cases, the bearing must support the forces that are imposed. Axial loads apply forces to a bearing in a single direction, while radial loads apply forces in both directions. Regardless of the type of load, axial and radial loads should be considered when selecting a bearing for a given application.
Angular and radial ball bearings differ in their materials. Radial ball bearings are made largely of through-hardened materials. They typically have a Rockwell hardness rating of 58 Rc. The raceways and balls of these bearings are made of 440C stainless steel. They may also contain shields and seals. SAE 52100 steel is the most common material for the raceway, while molybdenum steels are excellent for high temperatures.

They have a contact angle between the balls and the races

When comparing axial load bearings with their radial counterparts, the angular contact angle is more important. Axial load bearings, have a contact angle between the balls and the races of 35 degrees. They are suitable for axial loads and a limited radial load. The contact angle of these bearings is a result of the shape of the inner and outer rings. Each rolling element comes into contact with the inner and outer rings only at one point, forming a 30 degree angle with the radial plane. The radial force of the axial load on these bearings is therefore increased by increasing the contact angle between the balls and the races.
This contact angle determines the amount of friction between the balls and the races, and allows angular contact bearings to withstand heavy radial and thrust loads. In addition, the larger the contact angle, the greater the axial load support. Angular contact bearings come in standard imperial (inch) and metric (mm) sizes. The angular contact angle is determined by the free radial play value and the curvature of the inner track.

They are water-resistant

In addition to their water-resistant qualities, corrosion-resistant ball bearings can also protect against the damaging effects of corrosive environments. Generally, standard metals, such as steel, are susceptible to rust, which can significantly reduce their performance and extend the life of parts. However, plastics, stainless steel, and ceramics can provide corrosion-resistant ball bearings. And because these materials are much more durable, they offer other advantages, such as being easy to maintain.
Among the advantages of plastic ball bearings is their high resistance to extreme temperatures, high speeds, and corrosion. Depending on their construction, plastic bearings are often able to resist corrosion and anti-static properties. They’re lightweight and inexpensive compared to steel ball bearings. CZPT Sales Corporation was established in 1987 with a modest turnover of four lacs. As of the last financial year, it has grown to 500 lacs in sales.
Other advantages of water-resistant ball bearings include corrosion resistance, which is a key consideration in many applications. While stainless steel is highly corrosion-resistant, it decreases the bearing’s load-carrying capacity. Also, corrosion-resistant deep groove ball bearings are usually made with a specified internal clearance, which absorbs loss in clearance during mounting and shaft expansion. This factor affects their performance, and if these are compromised, a replacement may be necessary.
bearing

They are tough

A few things make ball bearings tough: they’re made of real materials, which means that they have inherent imperfections. Grade-1 balls are made especially for high-stress applications, such as Formula One engines. Grade-3 balls, on the other hand, strike the perfect balance between performance and cost. Ceramic balls, for example, are made to spin at a high rate of 400 RPM, and they’re finished with a mirror finish.
A steel carbon ball bearing is one of the toughest forms of ball bearings available. The material is incredibly strong, but the contact between the balls isn’t the best. Low-carbon steel is best for linear shafting and is usually coated with a polymer to prevent damage. Steel ball bearings with moderate amounts of carbon are tough, durable, and water-resistant. They’re ideal for gears, but their high-carbon steel counterparts are particularly tough and can resist corrosion.
A ceramic ball bearing is another option. This type has steel inner and outer rings but ceramic balls. Ceramic balls can withstand higher temperatures than steel and are also electrically insulating. Ceramic ball bearings also tend to be lighter and are more resistant to wear and tear. They’re also ideal for applications in which grease is not an option, such as in space shuttles. Despite the fact that ceramic ball bearings are tough, they’re still cheaper than steel ball bearings.

They are conductive

You may have heard the term “ball bearing” if you’ve studied introductory physics. What does that mean? Essentially, ball bearings are conductive because of their ability to conduct electricity. This ability is reflected in the charge distribution on the surface of the ball. Positive charges are drawn toward the positive plate, while negative charges are drawn away from the positively charged ball bearing. You may have even seen a ball bearing in action.
However, despite their conductive nature, ball bearings can still become damaged by electrical discharge. A higher voltage can cause the balls to pit, and the raceways to become uneven. These uneven surfaces will first show up as excessive noise, and eventually cause the bearing to malfunction. Fortunately, engineers have found a way to counter this problem: conductive grease. This grease enables current to flow through the ball bearing, preventing both heat and voltage buildup.
The difference between steel and ceramic ball bearings is their density. Steel bearings are more conductive than glass or hybrid ceramics. Steel ball bearings have an even grain structure and are conductive for resonance flow. When moving fast, the air surrounding the steel ball bearing carries resonance from the inner ring to the outer. This makes them ideal for high-speed resonance transfer. In addition to being conductive, glass microbeads are harder and lighter than steel.
bearing

They are used in pulley systems

Pulley systems use ball bearings to move the sprocket, which is a wheel that rotates. These bearings are installed on the center mounting hole of the pulley wheel. They protect the entire system from heat, while allowing higher speed and smooth operation. They distribute the weight of the load evenly, minimizing friction and wobbling, and ensure a smooth rotation. Ball bearings are typically made from steel and are installed inside the pulley wheel.
The moment of inertia and bearing friction are measured to within ten percent accuracy. These two variables affect the speed of the pulley system, which can lead to crashes if the weight holders are not balanced. Therefore, ball bearings are used to minimize the chance of such crashes. When you want to know more about ball bearings in pulley systems, here are the advantages they provide.
Another benefit of ball bearings in pulley systems is that they have lower friction than their solid counterparts. In order to reduce friction, however, ball bearings must be made of good materials. Some of the common ball materials are high-quality plastics and stainless steel. Good materials and clever block design are essential to minimizing friction. If you are planning to use ball bearings in your pulley system, check out the following tips and make sure you are choosing the right one for your application.
China supplier Cylindrical Roller Bearings Nj Type Nj202 Nj202e   drive shaft bearingChina supplier Cylindrical Roller Bearings Nj Type Nj202 Nj202e   drive shaft bearing
editor by CX 2023-11-12

China manufacturer Needle Bearing Ball Bearings HK Nk Na Fy F Bk Axk K NF Csk Rna Nki Tra Br Series Needle Roller Bearing for Auto Gearbox Machinery Auto Motorcycle Parts bearing block

Product Description

Product Description

Needle Roller Bearings

Needle roller bearing is a special type of roller bearing that has cylindrical rollers that resemble needles because of their small diameter.

Normally, the length of rollers in roller bearings is only slightly more than its diameter. When it comes to needle bearing, the length of rollers exceeds their diameter by at least 4 times.

As needle bearings have a smaller diameter, more rollers can be fit in the same space which increases the surface area in contact with the races. Thus, they are capable of handling high loads. The small size can also prove helpful in applications where space is limited as they require smaller clearances between the axle and the housing.

Detailed Photos

 

 

Bearing type Internal Diameter Outer Diameter Width Bearing type Internal Diameter Outer Diameter Width
d D B d D B
(mm) (mm) (mm) (mm) (mm) (mm)
HK0709 7 11 9 K25X29X17 25 29 17
HK0808 8 12 8 K25X30X13 25 30 13
HK571 8 12 10 K25X30X17 25 30 17
HK571 9 13 10 K25X30X20 25 30 20
HK571 9 13 12 K25X31X17 25 31 17
HK1571 10 14 10 K25X32X16 25 32 16
HK1012 10 14 12 K28X33X13 28 33 13
HK1210 12 16 10 K28X33X17 28 33 17
HK1412 14 20 12 K28X33X27 28 33 27
HK1416 14 20 16 K28X34X17 28 34 17
HK1512 15 21 12 K28X35X16 28 35 16
HK1516 15 21 16 K30X35X13 30 35 13
HK1612 16 22 12 K30X35X17 30 35 17
HK1616 16 22 16 K30X35X27 30 35 27
HK1712 17 23 12 K30X37X16 30 37 16
HK1812 18 24 12 K30X37X20 30 37 20
HK1816 18 24 16 K32X37X13 32 37 13
HK2571 20 26 10 K32X37X17 32 37 17
HK2012 20 26 12 K32X37X27 32 37 27
HK2016 20 26 16 K32X38X20 32 38 20
HK2210 22 28 10 K32X39X20 32 39 20
HK2212 22 28 12 K35X40X13 35 40 13
HK2216 22 28 16 K35X40X17 35 40 17
HK2512 25 32 12 K35X40X27 35 40 27
HK2516 25 32 16 K35X42X16 35 42 16
HK2520 25 32 20 K35X42X20 35 42 20
HK2816 28 35 16 K38X46X20 38 46 20
HK2820 28 35 20 K40X45X13 40 45 13
HK3012 30 37 12 K40X45X17 40 45 17
HK3016 30 37 16 K40X45X27 40 45 27
HK3571 30 37 20 K40X46X17 40 46 17
HK3512 35 42 12 K40X47X20 40 47 20
HK3520 35 42 20 K40X48X20 40 48 20
HK4012 40 47 12 K40X48X25 40 48 25
HK4571 40 47 20 K42X47X13 42 47 13
HK4512 45 52 12 K42X47X27 42 47 27
HK4520 45 52 20 K45X50X17 45 50 17
HK5571 50 58 20 K45X50X27 45 50 27
HK5520 55 63 20 K45X53X20 45 53 20
HK6571 60 68 20 K45X53X25 45 53 25
K100X108X30 100 108 30 K48X53X17 48 53 17
K10X13X10 10 13 10 K50X55X20 50 55 20
K10X13X13 10 13 13 K50X58X20 50 58 20
K10X14X10 10 14 10 K50X58X25 50 58 25

type Internal Diameter Outer Diameter Width Bearing type Internal Diameter Outer Diameter Width
d D B d D B
(mm) (mm) (mm) (mm) (mm) (mm)
BK0408 4 8 8 K10X14X13 10 14 13
BK0509 5 9 9 K10X15X15 10 15 15
BK0609 6 10 9 K10X16X12 10 16 12
BK0709 7 11 9 K12X15X10 12 15 10
BK0808 8 12 8 K12X15X13 12 15 13
BK571 8 12 10 K12X16X10 12 16 10
BK571 9 13 10 K12X16X13 12 16 13
BK571 9 13 12 K12X18X12 12 18 12
BK1571 10 14 10 K14X18X10 14 18 10
BK1012 10 14 12 K14X18X13 14 18 13
BK1210 12 16 10 K14X18X15 14 18 15
BK1412 14 20 12 K14X18X17 14 18 17
BK1416 14 20 16 K14X20X12 14 20 12
BK1512 15 21 12 K15X19X10 15 19 10
BK1516 15 21 16 K15X19X13 15 19 13
BK1612 16 22 12 K15X20X13 15 20 13
BK1616 16 22 16 K16X20X10 16 20 10
BK1712 17 23 12 K16X20X13 16 20 13
BK1812 18 24 12 K16X20X17 16 20 17
BK1816 18 24 16 K16X22X12 16 22 12
BK2012 20 26 12 K16X22X17 16 22 17
BK2016 20 26 16 K17X21X10 17 21 10
BK2212 22 28 12 K17X21X13 17 21 13
BK2216 22 28 16 K17X21X15 17 21 15
BK2512 25 32 12 K17X21X17 17 21 17
BK2516 25 32 16 K17X23X15 17 23 15
BK2520 25 32 20 K18X22X10 18 22 10
BK2816 28 35 16 K18X22X13 18 22 13
BK2820 28 35 20 K18X22X17 18 22 17
BK3012 30 37 12 K18X23X20 18 23 20
BK3016 30 37 16 K18X24X12 18 24 12
BK3571 30 37 20 K18X24X17 18 24 17
BK3512 35 42 12 K18X24X20 18 24 20
BK3520 35 42 20 K20X24X10 20 24 10
BK4012 40 47 12 K20X24X13 20 24 13
BK4571 40 47 20 K20X24X17 20 24 17
BK4520 45 52 20 K20X26X12 20 26 12
BK5571 50 58 20 K20X26X17 20 26 17
BK5520 55 63 20 K20X26X20 20 26 20
BK6571 60 68 20 K22X26X10 22 26 10
HK0408 4 8 8 K22X26X13 22 26 13
HK0509 5 9 9 K22X26X17 22 26 17
HK0608 6 10 8 K25X29X10 25 29 10
HK0609 6 10 9 K25X29X13 25 29 13

type Internal Diameter Outer Diameter Width Bearing type Internal Diameter Outer Diameter Width
d D B d D B
(mm) (mm) (mm) (mm) (mm) (mm)
N202 15 35 11 NUP205 25 52 15
NF202 15 35 11 RN205 25 15
NU202 15 35 11 RNU205 52 15
NJ202 15 35 11 N2205 25 52 18
RN202 15 11 N2205 25 52 18
RNU202 35 11 NUP2205NV 25 52 18
N203 17 40 12 LRN605/YA 52 15
NF203 17 40 12        
NU203 17 40 12 N305 25 62 17
NJ203 17 40 12 NU305 25 62 17
RN203 17 12 NJ305 25 62 17
RNU203 40 12 NUP305 25 62 17
N204 20 47 14 RN305 25 17
NF204 20 47 14 NF305 25 62 17
NU204 20 47 14 RNU305 62 17
NJ204 20 47 14 NCL2305 25 62 24
NUP204 20 47 14        
RN204 20 14 N206 30 62 16
RNU204 47 14 NF206 30 62 16
RN-V604ENV/P6 55 20 NU206 30 62 16
        NJ206 30 62 16
N304 20 52 15 NUP206 30 62 16
NF304 20 52 15 RN206 30 16
NU304 20 52 15 RUN206 62 16
NJ304 20 52 15 NCL206 30 62 16
NUP304 20 52 15        
RN304 20 15 N306 30 72 19
RNU304 52 15 NF306 30 72 19
        NU306 30 72 19
N205 25 52 15 NJ306 30 72 19
NF205 25 52 15 NUP306 30 72 19
NU205 25 52 15 RN306 30 19
NJ205 25 52 15        

 

Product Applications

 

Company Profile

 

ZheJiang Jieyi Bearing Co., Ltd. is a more than 10-year history of bearing trading company. We are located in the biggest bearing town in China–Yiandian Town.

Our products include: Deep Groove Ball Bearings, Self-aligning Ball Bearings, Spherical Bearings, Tapered Roller Bearings, Cylindrical Roller Bearings, Needle Roller Bearings, Self-aligning Roller Bearings, Angular Contact Ball Bearings, Thrust Ball Bearings, Trust Roller Bearings and Special Bearings.

Jieyi Bearing has advanced quality testing and inspecting equipment, to guarantee product quality meets customers’ demand. Annually our company′ S export over 10 million dollars.

To service dear customers at the fastest speed, we built a great Warehouse to stock bearings, so as to ship your required bearings fast. Inside of the bearing warehouse, there is all sourcing of bearing stock, with all kinds of bearings, over 10000 types.

Jieyi Bearing also provides OEM service, such as bearing quality, noise level, grease brand, packing method, etc. We have enough OEM experience, and have a complete OEM manual for customer reference.

Products have been selling well in the American, French, Spanish, Austria, Italian, the U. A. E. Saudi, Pakistan, India, and Brizal markets.

With over 10 years′ Experience in bearings market, Jieyi Bearing have built up good relationship with all of our customers and quality factory. We always get satisfactory feedback from our customers because of the high quality products and good OEM service. We always supply the quality, stable, economical bearings and proper technical services.

Welcome to people of various enterprises with advance!

 

Packaging & Shipping

Packing Type:

A. Plastic Paper + Kraft Paper + Carton + Nylon Bag
B. Tube Package + Carton + Nylon Bag
C. Single Box + Carton + Pallets
D. Custom Packing According To Your Requirement

 

Our Advantages

WHY CHOOSE US?

 

1. BETTER COMMUNICATION

JVZB Bearing understands customer service more so than factories, we focus entirely on the customer so it is often easier to communicate with you.
 

2. FAVORABLE PRICING

JVZB Beaing often uses factories that are not big enough to have their own international sales team or export license. This means: we can work with factories that have lower prices than some easy-to-find competitors online.
 

3. LOW MOQ

We have great relationships with factories or have product stock on hand, CZPT to offer lower order quantities for the small sized importer.
 

4. SUPPLIER VERIFICATION

JVZB Bearing have more than 10 years of long-standing relationships with the factories, so we are aware of the capabilities of each. If you need, we can visit the factory to carry out product inspections and check up on an order.  
 

5. QC CONTROL

JVZB Bearing have our own quality inspection laboratory with advanced testing equipment, we are CZPT to reasonably ensure the quality of the finished products.
 

6. MULTIPLE VARIETY PURCHASE

In fact, bearing factories usually only produce 1 type of bearing, or even focus on producing several models.  If you want multiple items sourced for 1 product,  we can help. This is a great way to source more products and do so quickly and efficiently.
 

7. OEM or OEM SERVICE

If you need special package or special labeling, we are glad to support OEM or OEM service.

Product List

 

 

The Number of Rows: Single
Material: Bearing Steel
Rolling Body: Roller Bearings
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

bearing

Materials Used in Bearings

If you’re not familiar with the types of bearings, you may be interested in knowing more about the materials used to manufacture them. Here’s a look at what each type of bearing is made of, how it’s used, and how much they cost. To find the right bearing for your application, it’s important to choose a quality lubricant. The materials used in bearings are determined by their type and applications. Choosing the right lubricant will extend its life, and protect your machine’s parts from damage and premature wear.

Materials used in bearings

Bearings are made from a variety of materials. Stainless steel is a common material used for the components of bearings. It has a higher content of chromium and nickel. When exposed to oxygen, chromium reacts with it to form chromium oxide, which provides a passive film. For higher temperatures, teflon and Viton are also used. These materials offer excellent corrosion resistance and are often preferred by manufacturers for their unique properties.
Stainless steel is another material used in bearings. AISI 440C is a high-carbon stainless steel commonly used in rolling-contact bearings. It is widely used in corrosive environments, especially in applications where corrosion resistance is more important than load capacity. It can also be heat-treated and hardened to 60 HRC, but has lower fatigue life than SAE 52100. Stainless steel bearings may carry a 20-40% price premium, but their superior performance is worth the extra money.
Graphite and molybdenum disulfide are two of the most common materials used in bearings. While graphite is a popular material in bearings, it has very poor corrosion resistance and is unsuitable for applications where oil or grease is required. Graphite-based composite materials are another option. They combine the benefits of both graphite and ceramic materials. A variety of proprietary materials have been developed for high-temperature use, such as graphite and MoS2.
Wood bearings have been around for centuries. The oldest ones used wood and Lignum Vitae. These materials were lightweight, but they were incredibly strong and durable. Wood bearings were also lubricated with animal fats. During the 1700s, iron bearings were a popular choice. In 1839, Isaac Babbitt invented an alloy containing hard metal crystals suspended in a softer metal. It is considered a metal matrix composite.

Applications of bearings

Bearings are used in many different industries and systems to help facilitate rotation. The metal surfaces in the bearings support the weight of the load, which drives the rotation of the unit. Not all loads apply the same amount of force to bearings, however. Thrust and radial loads act in distinctly different ways. To better understand the different uses of bearings, let’s examine the various types of bearings. These versatile devices are essential for many industries, from automobiles to ships and from construction to industrial processes.
Cylindrical roller bearings are designed to support heavy loads. Their cylindrical rolling element distributes the load over a larger area. They are not, however, suited to handling thrust loads. Needle bearings, on the other hand, use small diameter cylinders and can fit into tighter spaces. The advantages of these types of bearings are numerous, and many leading producers are now leveraging the Industrial Internet of Things (IIoT) to develop connected smart bearings.
As a power generation industry, bearings play an essential role. From turbines to compressors, from generators to pumps, bearings are essential components of equipment. In addition to bearings, these components help move the equipment, so they can work properly. Typically, these components use ball bearings, although some roller bearings are used as well. In addition to being efficient and durable, these types of bearings also tend to be built to meet stringent internal clearance requirements and cage design requirements.
In addition to bearings for linear motion, bearings can also bear the weight of a rotary part. Depending on the application, they can be designed to minimize friction between moving parts. By constraining relative motion, bearings are used to reduce friction within a given application. The best-designed bearings minimize friction in a given application. If you’re in the market for a new bearing, NRB Industrial Bearings Limited is an excellent source to begin your search.

Types of bearings

bearing
The type of bearings you choose will have a significant impact on the performance of your machinery. Using the right bearings can increase efficiency, accuracy, and service intervals, and even reduce the cost of purchasing and operating machinery. There are several different types of bearings to choose from, including ball bearings and flexure bearings. Some types use a fluid to lubricate their surfaces, while others do not.
Plain bearings are the most common type of bearing, and are used for a variety of applications. Their cylindrical design allows for a relatively smooth movement. Often made of copper or other copper alloy, they have low coefficients of friction and are commonly used in the construction industry. Some types of plain bearings are also available with a gudgeon pin, which connects a piston to a connecting rod in a diesel engine.
Magnetic bearings are the newest type of bearing. They use permanent magnets to create a magnetic field around the shaft without requiring any power. These are difficult to design, and are still in the early stages of development. Electromagnets, on the other hand, require no power but can perform very high-precision positioning. They can be extremely durable and have a long service life. They are also lightweight and easy to repair.
Another type of bearing is needle roller. These are made of thin, long, and slender cylinders that are used in a variety of applications. Their slender size is ideal for a space-constrained application, and their small profile allows them to fit in tight places. These types of bearings are often used in automotive applications, bar stools, and camera panning devices. They have several advantages over ball bearings, including the ability to handle heavy axial loads.

Cost of bearings

A wide range of factors affect the cost of aerospace bearings, including the bearing material and its volatility. Manufacturers typically use high-grade steel for aircraft bearings, which are highly affected by fluctuations in the steel price. Government policies also play a part in the variation in trade price. The implementation of COVID-19 has changed the market dynamics, creating an uncertain outlook for supply and demand of aerospace bearings. New trade norms and transportation restrictions are expected to hamper the growth of this industry.
Demand for aerospace bearings is largely driven by aircraft manufacturers. In North America, aircraft manufacturers must meet extremely high standards of weight, performance, and quality. They also must be lightweight and cost-effective. This has resulted in a rising cost of aerospace bearings. The market for aerospace bearings is expected to grow at the highest CAGR over the next few years, driven by increasing investments in defense and aerospace infrastructure across Asia-Pacific.
Hub assemblies are also expensive. A wheel hub will cost between $400 and $500 for one set of bearings. In addition to this, the speed sensor will be included. The average cost of wheel bearings is between $400 and $500 for one side, including labor. But this price range is much lower if the bearing is a replacement of an entire wheel assembly. It is still worth noting that wheel hub bearings can be purchased separately for a lower price.
Replacement of one or two wheel bearings will depend on the model and year of the vehicle. For a small car, one rear wheel bearing can cost between $190 and $225, whereas two front wheel hubs can cost upwards of $1,000. Labor and parts prices will vary by location, and labor costs may also be covered under some warranty plans. If you decide to have it done yourself, be sure to ask multiple shops for estimates.

Inspection of bearings

bearing
To maintain bearing performance and prevent accidents, periodic inspections are essential. In addition to ensuring reliability, these inspections improve productivity and efficiency. Regular maintenance includes disassembly inspection, replenishment of lubricant and monitoring operation status. Here are some common ways to perform the necessary inspections. Keep reading to learn how to maintain bearings. After disassembly, you must clean the components thoroughly. Ensure that the bearings are free of burrs, debris, and corrosion.
Ultrasound technology is an excellent tool for monitoring slow-speed bearings. Most ultrasound instruments offer wide-ranging sensitivity and frequency tuning. Ultrasound can also be used to monitor bearing sound. Ultra-slow bearings are usually large and greased with high-viscosity lubricant. Crackling sounds indicate deformity. You can also listen for abnormal noise by plugging a vibration analyzer into the machine. Once the machine shows abnormal noise, schedule additional inspections.
Ultrasonic inspection involves using an ultrasound transducer to measure the amplitude of sound from a bearing. It is effective in early warnings of bearing failure and prevents over-lubrication. Ultrasound inspection of bearings is a cost-effective solution for early diagnosis of bearing problems. In addition to being a reliable tool, ultrasonic testing is digital and easy to implement. The following are some of the advantages of ultrasonic bearing inspection.
Dynamic quality evaluation involves the use of a special fixture for measuring bearing deformations under low shaft speed and light radial load. The size of the fixture influences the value of the deformations. A fixture should be sized between the diameter of the sensor and the roller to ensure maximum precision. The outer deformation signal is more sensitive with a larger sensor diameter. A vibration-acceleration sensor is used for the contrast test.

China manufacturer Needle Bearing Ball Bearings HK Nk Na Fy F Bk Axk K NF Csk Rna Nki Tra Br Series Needle Roller Bearing for Auto Gearbox Machinery Auto Motorcycle Parts   bearing blockChina manufacturer Needle Bearing Ball Bearings HK Nk Na Fy F Bk Axk K NF Csk Rna Nki Tra Br Series Needle Roller Bearing for Auto Gearbox Machinery Auto Motorcycle Parts   bearing block
editor by CX 2023-10-20

China manufacturer High Quality Cylindrical Bearing Angular Contact Ball Bearings Spherical Roller Spherical Plain Bearings for Farm Machinery Parts bearing engineering

Product Description

GEG230XS-2RS Ball Joint Bearing Radial Spherical Plain Bearing GEG 230 XS-2RS-L571    

       Application

Spherical Plain Bearings have an inner ring with a sphere convex outside surface and an outer ring with a correspondingly sphere,
but concave inside surface. Their design makes them particularly suitable for bearing arrangements where alignment movements 
between shaft and housing have to accommodate, or where oscillating or recurrent tilting movements must be permitted at relatively
slow sliding speeds.

GE Series Radial Spherical Plain Bearing

Product Name Spherical Plain Bearing
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel  (GCr15)
Clearance C0 C1 C2 C3 C4 C5
Vibration & Noisy Z1,Z2,Z3 V1,V2,V3
Sliding Contact Steel-on-Steel
Features High Precision, High Speed, Long Life, High Reliability, Low Noise , Reduce Friction
Certification ISO 9001:2008
Packing 1.Neutral Packing Bearing  2.Industrial Packing  3.Commercial Packing Bearing  4.Customize
Delivery Time 30 – 45 Days After The Order is Confirmed
Shippment 1.By Sea  2.By Air  3.By Express

 

Product Description

Bearing No. Dimensions(mm) Load ratings
KN

weight
≈ kg
d D B c dk rs r1s Dynamic Static
GE15ES-2RS 15 26 12 9 22 0.3 0.3 16 84 8 0.571
GE17ES-2RS 17 30 14 10 25 0.3 0.3 21 106 10 0.041
GE20ES-2RS 20 35 16 12 29 0.3 0.3 30 146 9 0.066
GE25ES-2RS 25 42 20 16 35.5 0.6 0.6 48 240 7 0.119
GE30ES-2RS 30 47 22 18 40.7 0.6 0.6 62 310 6 0.153
GE35ES-2RS 35 55 25 20 47 0.6 1 79 399 6 0.233
GE40ES-2RS 40 62 28 22 53 0.6 1 99 495 7 0.306
GE45ES-2RS 45 68 32 25 60 0.6 1 127 637 7 0.427
GE50ES-2RS 50 75 35 28 66 0.6 1 156 780 6 0.546
GE55ES-2RS 55 85 40 32 74 0.6 1 200 1000 7 0.939
GE60ES-2RS 60 90 44 36 80 1 1 245 1220 6 1.04
GE70ES-2RS 70 105 49 40 92 1 1 313 1560 6 1.55
GE80ES-2RS 80 120 55 45 105 1 1 400 2000 6 2.31
GE90ES-2RS 90 130 60 50 115 1 1 488 2440 5 2.75
GE100ES-2RS 100 150 70 55 130 1 1 607 3030 7 4.45
GE110ES-2RS 110 160 70 55 140 1 1 654 3270 6 4.82
GE120ES-2RS 120 180 85 70 160 1 1 950 4750 6 8.05
GE140ES-2RS 140 210 90 70 180 1 1 1070 5350 7 11.02
GE160ES-2RS 160 230 105 80 200 1 1 1360 6800 8 14.01
GE180ES-2RS 180 260 105 80 225 1.1 1.1 1530 7650 6 18.65
GE200ES-2RS 200 290 130 100 250 1.1 1.1 2120 10600 7 28.03
GE220ES-2RS 220 320 135 100 275 1.1 1.1 2320 11600 8 35.51
GE240ES-2RS 240 340 140 100 300 1.1 1.1 2550 12700 8 39.91
GE260ES-2RS 260 370 150 110 325 1.1 1.1 3030 15190 7 51.54
GE280ES-2RS 280 400 155 120 350 1.1 1.1 3570 17850 6 65.06
GE300ES-2RS 300 430 165 120 375 1.1 1.1 3800 19100 7 78.07

Detailed Photos

Classification

Strict Testing Produre

 

Company Profile

 

 

 

Packaging & Shipping

 

FAQ

Q: Are you trading company or manufacturer ?

 A: We are factory.We have our own brand:HQA .If you interested in our product,I can take you to visit our factory.

 Q: How long is your delivery time?
 A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is  according to quantity.

Q: Where is your factory located? How can I visit there?
 A: Our factory is located in ZheJiang Province,You can take the high-speed rail or plane to visit.

Q: Do you provide samples ? it is free charge?
 A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q:The MOQ is how much?
 A: About ordinary standard type of bearing ,We have rich inventory,not have MOQ,if your need a 
     product is Non-standard size,need customize,we will according the product size to determine the MOQ.

Contact Angle: 0
Aligning: Non-Aligning Bearing
Separated: Separated
Rows Number: Single
Material: Gcr15
Inner Ring/Finish: Inner Ring Gcr15/AISball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability ofball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

I 52100 Steel,Hardened and Pho

Samples:
US$ 0.01/Set
1 Set(Min.Order)

|
Request Sample

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China manufacturer High Quality Cylindrical Bearing Angular Contact Ball Bearings Spherical Roller Spherical Plain Bearings for Farm Machinery Parts   bearing engineeringChina manufacturer High Quality Cylindrical Bearing Angular Contact Ball Bearings Spherical Roller Spherical Plain Bearings for Farm Machinery Parts   bearing engineering
editor by CX 2023-08-23