Tag Archives: bearing

China Hot selling Bearing Ball Bearing China Hot Sale High Precision 6802 Deep Groove Ball Bearing for Bicycle Parts ball bearing

Product Description

Bearing Ball bearing China hot sale high precision 6802 deep groove ball bearing for bicycle parts

Bearing parameters:
 

CHROME STEEL*     Dimensions in mm unless otherwise specified
 
Bore O.D. Width Open Bearing Shielded Bearing Sealed Bearing Basic Load Ratings
      KN
HNS HNS HNS dynamic static
Reference Reference Reference C Co
20 42 12 6004 6004ZZ 6004-2RS 7.22 4.46
47 14 6204 6204ZZ 6204-2RS 12.7 6.5
52 15 6304 6304ZZ 6304-2RS 15.9 7.8
25 47 12 6005 6005ZZ 6005-2RS 10.1 5.85
52 15 6205 6205ZZ 6205-2RS 14 7.8
62 17 6305 6305ZZ 6305-2RS 22.5 11.6
80 21 6405 6405ZZ 6405-2RS 36.1 19.4
30 55 13 6006 6006ZZ 6006-2RS 10.2 6.91
62 16 6206 6206ZZ 6206-2RS 19.5 11.2
72 19 6306 6306ZZ 6306-2RS 28.1 16
90 23 6406 6406ZZ 6406-2RS 43.4 23.9
35 62 14 6007 6007ZZ 6007-2RS 16 10.3
72 17 6207 6207ZZ 6207-2RS 25.5 15.3
80 21 6307 6307ZZ 6307-2RS 33.2 19
100 25 6407 6407ZZ 6407-2RS 55 31
40 68 15 6008 6008ZZ 6008-2RS 13 11.5
80 18 6208 6208ZZ 6208-2RS 29.8 18
90 23 6308 6308ZZ 6308-2RS 39.8 23.3
110 27 6408 6408ZZ 6408-2RS 65.5 37.5
45 75 16 6009 6009ZZ 6009-2RS 21 14.9
85 19 6209 6209ZZ 6209-2RS 32.2 21
100 25 6309 6309ZZ 6309-2RS 51.1 30.5
120 29 6409 6409ZZ 6409-2RS 77.5 45.5
50 80 16 6571 6571ZZ 6571-2RS 22 16.2
90 20 6210 6210ZZ 6210-2RS 34 22.5
110 27 6310 6310ZZ 6310-2RS 59.9 36.9
130 31 6410 6410ZZ 6410-2RS 92.2 55.2
55 90 18 6011 6011ZZ 6011-2RS 30.4 22
100 21 6211 6211ZZ 6211-2RS 43.3 28.1
120 29 6311 6311ZZ 6311-2RS 71.5 44.6
140 33 6411 6411ZZ 6411-2RS 100 62.5
60 95 18 6012 6012ZZ 6012-2RS 30.7 22.7
110 22 6212 6212ZZ 6212-2RS 46.1 31.5
130 31 6312 6312ZZ 6312-2RS 79.4 50.4
150 35 6412 6412ZZ 6412-2RS 109 70
65 100 18 6013 6013ZZ 6013-2RS 32.1 24.9
120 23 6213 6213ZZ 6213-2RS 54.2 39.3
140 33 6313 6313ZZ 6313-2RS 89.5 59.7
160 37 6413 6413ZZ 6413-2RS 118 78.5
70 110 20 6014 6014ZZ 6014-2RS 38.6 30.6
125 24 6214 6214ZZ 6214-2RS 58.9 43.6
150 35 6314 6314ZZ 6314-2RS 101 66
180 42 6414 6414ZZ 6414-2RS 140 99.5
75 115 20 6015 6015ZZ 6015-2RS 31 33.1
130 25 6215 6215ZZ 6215-2RS 64.3 47.5
160 37 6315 6315ZZ 6315-2RS 111 74.2
190 45 6415 6415ZZ 6415-2RS 154 115
80 125 22 6016 6016ZZ 6016-2RS 47.5 39.8
140 26 6216 6216ZZ 6216-2RS 68.1 53.3
170 39 6316 6316ZZ 6316-2RS 120 83.9
200 48 6416 6416ZZ 6416-2RS 163 125
85 130 22 6017 6017ZZ 6017-2RS 50.8 42.8
150 28 6217 6217ZZ 6217-2RS 83.2 64
180 41 6317 6317ZZ 6317-2RS 132 96.5
210 52 6417 6417ZZ 6417-2RS 175 138
90 140 24 6018 6018ZZ 6018-2RS 58 49.8
160 30 6218 6218ZZ 6218-2RS 92.7 71.3
190 43 6318 6318ZZ 6318-2RS 145 108
225 54 6418 6418ZZ 6418-2RS 192 158
95 145 24 6019 6019ZZ 6019-2RS 57.8 50
170 32 6219 6219ZZ 6219-2RS 105 79.1
200 45 6319 6319ZZ 6319-2RS 157 122
100 150 24 6571 6571ZZ 6571-2RS 64.5 56.2
180 34 6220 6220ZZ 6220-2RS 118 88.4
215 47 6320 6320ZZ 6320-2RS 173 140
105 160 26 6571 6571ZZ 6571-2RS 71.8 63.2
190 36 6221 6221ZZ 6221-2RS 126 98.8
225 49 6321 6321ZZ 6321-2RS 173 145
110 170 28 6571 6571ZZ 6571-2RS 81.9 72.9
200 38 6222 6222ZZ 6222-2RS 136 112
240 50 6322 6322ZZ 6322-2RS 193 171
120 180 28 6571 6571ZZ 6571-2RS 88.7 79.7
215 40 6224 6224ZZ 6224-2RS 139 112
260 55 6324 6324ZZ 6324-2RS 217 196
130 200 33 6026 6026ZZ 6026-2RS 105 96.8
230 40 6226 6226ZZ 6226-2RS 148 125
280 58 6326 6326ZZ 6326-2RS 218 205
140 210 33 6571 6571ZZ 6571-2RS 116 108
250 42 6228 6228ZZ 6228-2RS 179 167
300 62 6328 6328ZZ 6328-2RS 275 272
150 225 35 6030 6030ZZ 6030-2RS 132 125
270 45 6230 6230ZZ 6230-2RS 190 183
160 240 38 6032 6032ZZ 6032-2RS 145 138
290 48 6232 6232ZZ 6232-2RS 215 218

About Deep Groove Ball Cearing

  • 6000 Series – Extra Light Ball Bearings – Ideal for limited space applications
  • 6200 Series – Light Series Ball Bearings – Balanced between space and load capacity
  • 6300 Series – Medium Series Ball Bearings – Ideal for heavier load capacity applications

Deep groove ball bearing component:

Rich bearings in stock:


Application

Package:
A. Plastic paper + kraft paper + outer carton + Nylon bag
B. Tube package + outer carton + Nylon bag
C. Single box + outer carton + pallets
D. According to your requirement

For more information, contact us directly pls.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 0
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 0.01/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China Hot selling Bearing Ball Bearing China Hot Sale High Precision 6802 Deep Groove Ball Bearing for Bicycle Parts   ball bearingChina Hot selling Bearing Ball Bearing China Hot Sale High Precision 6802 Deep Groove Ball Bearing for Bicycle Parts   ball bearing
editor by CX 2024-04-24

China Good quality Linear Bearings Bushing Lm6uu 6mm 3D Printer Robot DIY CNC Motion Linear Sliding Ball Bearing bearing block

Product Description

Product Description

  • Bearing structure: consists of outer cylinder, retainer, balls, side seals;
  • Premium grade raw material: GCr15 bearing steel cylinder, G10 class precision ball, PA66 plastic retainer;
  • Cylinder metal body is heat treated and hardened to enhance to the rigidity and working life;
  • Both the inner bore and outer cylinder surface are ground several procedures to guarantee the precision;
  • Completely washed by the super sonic washing machine, pre-lubricated;
  • Main features: high precision and rigidity, low friction, ease of assembly and replacement, good interchangeability;
  • Good quality at affordable rates, price is very economic and nice;
  • Ideal transmission component for linear motion movement, widely used in CNC machines, factory automation, industrial machines, electric tools, textile machines, fitting equipment, etc.;
  • Wide size range for option, models including(special size has to be customized): 
    LM3, LM4, LM5UU, LM6UU, LM8SUU, LM8UU, LM10UU, LM12UU, LM13UU, LM16UU, LM20UU, LM25UU, LM30UU, LM35UU, LM40UU, LM50UU, LM60UU, LM80UU, LM100UU, LM120UU, LM150UU, etc.
  •  

Product Parameters

Detailed Photos

 

 

Certifications

 

Packaging & Shipping

1.According to the quantity and the ship method of your order, we will choose the best packing ways.
2.For example, if the products shipped by TNT,DHL,FedEx, the goods would be packed by paper carton for economic delivery. As bulk order shipped by sea, the goods would be packed by wooden carton.

Our Advantages

FAQ

DO NOT worry about PRICE, we are manufacturer.

 

DO NOT worry about QUALITY, we have 16 years experience.

 

DO NOT worry about AFTER-SALES, we are 24 hours online.

Q1:Who we are?

We are the factory based in ZHangZhoug,China,start from 2007 sell to all over the.world.the factory area is around 45000 square meters.we have 900 employees.

 

Q2: Do you have a catalogue?

Can you send me the catalogue to have a check of all your products?

A: Yes , We have product catalogue.Please contact us on line or send an Email to sending the catalogue.

Q3: I can’t find the product on your catalogue, can you make this product for me?
A: Our catalogue shows most of our products,but not all.So just let us know what product do you need.

Q4 : Can you make customized products and customized packing?
A: Yes.We made a lot of customized products for our customer before.And we have many moulds for our customers already.About customized packing,we can put your Logo or other info on the packing.There is no problem.

Q5: Can you provide samples ? Are the samples free ?
A: Yes,we can provide samples.Normally,we provide 1-2pcs free samples for test or quality checking.But you have to pay for the
shipping cos.If you need many items, or need more qty for each item,we will charge for the samples.
 

Any requirements or question,Welcome to “Send” us an e-mail Now!
 

Recommend product

 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Magnetically, Corrosion Resistant, High Speed, High Precision
Function: Super
Flange Shape: Oval
Shape: Flange
Series: LM
Material: Bearing Steel
Samples:
US$ 16.8/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Common Signs of Wear or Damage in Ball Bearings that Indicate the Need for Replacement?

Ball bearings are subjected to wear and stress during operation, and over time, they may exhibit signs of damage or deterioration that warrant replacement. Recognizing these signs is crucial to prevent catastrophic failure and ensure safe and reliable operation. Here are the common signs of wear or damage in ball bearings:

  • Unusual Noise:

If you hear unusual grinding, clicking, or rumbling noises coming from the bearing during operation, it may indicate worn-out or damaged components. Unusual noise suggests that the bearing is no longer operating smoothly.

  • Vibration:

Excessive vibration in the machinery can be a sign of bearing wear. Vibrations can result from uneven wear, misalignment, or damaged components within the bearing.

  • Increased Temperature:

Higher operating temperatures than usual may indicate increased friction due to inadequate lubrication, wear, or other issues. Monitoring the bearing’s temperature can help identify potential problems.

  • Irregular Movement:

If you notice irregular movement, jerking, or sticking during rotation, it could be a sign that the bearing is no longer operating smoothly. This may be due to damaged rolling elements or raceways.

  • Reduced Performance:

If the machinery’s performance has decreased, it may be due to a compromised bearing. Reduced efficiency, increased energy consumption, or a decline in overall performance could be indicators of bearing wear.

  • Visible Wear or Damage:

Inspect the bearing for visible signs of wear, such as pitting, scoring, or discoloration on the rolling elements or raceways. Severe wear or damage is a clear indication that the bearing needs replacement.

  • Leakage or Contamination:

If there is evidence of lubricant leakage, contamination, or the presence of foreign particles around the bearing, it suggests that the seal or shield may be compromised, leading to potential damage.

  • Looseness or Excessive Play:

If you can feel excessive play or looseness when manually moving the bearing, it could indicate worn-out components or misalignment.

  • Reduced Lifespan:

If the bearing’s expected lifespan is significantly shorter than usual, it may be due to inadequate lubrication, excessive loads, or improper installation, leading to accelerated wear.

  • Frequent Failures:

If the bearing is consistently failing despite regular maintenance and proper use, it could indicate a chronic issue that requires addressing, such as inadequate lubrication or misalignment.

It’s important to conduct regular inspections, monitor performance, and address any signs of wear or damage promptly. Replacing worn or damaged ball bearings in a timely manner can prevent further damage to machinery, reduce downtime, and ensure safe and efficient operation.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

How does Lubrication Impact the Performance and Lifespan of Ball Bearings?

Lubrication plays a critical role in the performance and lifespan of ball bearings. Proper lubrication ensures smooth operation, reduces friction, minimizes wear, and prevents premature failure. Here’s how lubrication impacts ball bearings:

  • Friction Reduction:

Lubrication creates a thin film between the rolling elements (balls) and the raceways of the bearing. This film reduces friction by separating the surfaces and preventing direct metal-to-metal contact. Reduced friction results in lower energy consumption, heat generation, and wear.

  • Wear Prevention:

Lubricants create a protective barrier that prevents wear and damage to the bearing’s components. Without proper lubrication, the repeated rolling and sliding of the balls against the raceways would lead to accelerated wear, surface pitting, and eventual failure.

  • Heat Dissipation:

Lubricants help dissipate heat generated during operation. The rolling elements and raceways can generate heat due to friction. Adequate lubrication carries away this heat, preventing overheating and maintaining stable operating temperatures.

  • Corrosion Resistance:

Lubrication prevents moisture and contaminants from coming into direct contact with the bearing’s surfaces. This helps protect the bearing against corrosion, rust, and the formation of debris that can compromise its performance and longevity.

  • Noise Reduction:

Lubricated ball bearings operate quietly because the lubricant cushions and dampens vibrations caused by the rolling motion. This noise reduction is crucial in applications where noise levels need to be minimized.

  • Seal Protection:

Lubricants help maintain the effectiveness of seals or shields that protect the bearing from contaminants. They create a barrier that prevents particles from entering the bearing and causing damage.

  • Improved Efficiency:

Properly lubricated ball bearings operate with reduced friction, leading to improved overall efficiency. This is especially important in applications where energy efficiency is a priority.

  • Lifespan Extension:

Effective lubrication significantly extends the lifespan of ball bearings. Bearings that are properly lubricated experience less wear, reduced fatigue, and a lower likelihood of premature failure.

  • Selection of Lubricant:

Choosing the right lubricant is essential. Factors such as speed, temperature, load, and environmental conditions influence the choice of lubricant type and viscosity. Some common lubricant options include grease and oil-based lubricants.

  • Regular Maintenance:

Regular lubrication maintenance is crucial to ensure optimal bearing performance. Bearings should be inspected and relubricated according to manufacturer recommendations and based on the application’s operating conditions.

In summary, proper lubrication is essential for the optimal performance, longevity, and reliability of ball bearings. It reduces friction, prevents wear, dissipates heat, protects against corrosion, and contributes to smooth and efficient operation in various industrial and mechanical applications.

China Good quality Linear Bearings Bushing Lm6uu 6mm 3D Printer Robot DIY CNC Motion Linear Sliding Ball Bearing   bearing blockChina Good quality Linear Bearings Bushing Lm6uu 6mm 3D Printer Robot DIY CNC Motion Linear Sliding Ball Bearing   bearing block
editor by CX 2024-04-24

China supplier Bearing Manufacturer Supply Flexible Rod End Ball Joint Bearings with Good quality

Product Description

Ball Joint Rod Ends is made up of Zinc base alloy, ball joint shank of carbon steel. It has characteristics of self-aligning, wear-resistance and easy mounting, apply to transportation vechle, packing machinery, agricultural machinery, ect..

Model No. Dimensions(mm) Static
Load
N.W.
d d1 d2 d3 I I1 I2 I3 S1 L L1 L2 L3 D1 D2 D3 S2 a kg
min max max min max max max max max max max  
RBL5-R 5 M5 9 19 29 8 10 21 7 35 27 4 14 9 11 16 9 25 2.2 0.026
RBL6-R 6 M6 10 20 35.5 11 11 26 8 40 30 5 14 10 13 19 11 25 3.5 0.039
RBL8-R 8 M8 12 24 42.5 12 14 31 10 48 36 6 17 12.5 16 23 14 25 6.6 0.068
RBL10-R 10 M10x1.25 14 30 50.5 15 17 37 11 57 43 6.5 21 15 19 27 17 25 10 0.112
RBL10-R-1 10 M10x1.5 14 30 56.5 21 17 43 11 57 43 6.5 21 15 19 27 17 25 10 0.112
RBL12-R 12 M12x1.25 17 32 57.5 17 19 42 15 66 50 6.5 25 17.5 22 31 19 25 16 0.164
RBL12-R-1 12 M12x1.75 17 32 64.5 24 19 49 15 66 50 6.5 25 17.5 22 31 19 25 16 0.164
RBL14-R 14 M14x1.4 19 38 73.5 22 21.5 56 17 75 57 8 26 17.5 25 35 22 25 19 0.254
RBL14-R-1 14 M14x2 19 39 79.5 28 21.5 62 17 75 57 8 26 20 25 35 22 25 19 0.5714
RBL16-R 16 M16x1.5 22 44 79.5 23 23.5 60 19 84 64 8 32 20 28 39 22 20 26 0.336
RBL16-R-1 16 M16x2 22 44 85.5 29 23.5 66 19 84 64 8 32 22 28 39 22 20 26 0.366
RBL18-R 18 M18x1.5 23 46 90 25 26.5 68 20 93 71 10 34 25 31 44 27 20 33 0.464
RBL20-R 20 M22x1.5 27 50 90 25 27 68 24 99 77 10 35 27.5 36 66 30 20 45 0.538
RBL22-R 22 M22x1.5 27 52 95 26 28 70 24 109 84 12 41 30 37 50 32 16 48 0.713

Q1: Can I get a free sample?
A1: We provide samples free in freight collected. For special samples requirement, please contact us for more details. 
Q2: How could I pay?
A2: We prefer T/T or L/C at sight. If you prefer other payment terms, please contact us freely.
Q3: What is your brand and packing way? Can you produce my brand and packing?
A3: Our brand is SGC and our own packing materials. We can make your brand. For more details, please contact us.
Q4: What is the delivery lead time?
A4: It depends on the order quantities. The mass production lead time is about 45-60 days after receipt of the deposit. 
Q5: Are you manufacturer or  trading company?
A5: We are manufacturer and exporter. We provide all kinds of OEM services for clients around the world.
Q6: Where is your main market?
A6: We export to the North America, Mexico, Australia, South-east Asia, Europe, U.A.E., Turkey, and other countries.

Our Services
1. Professional QC and QA team to make sure all products qualified before shipping.
2. Competitive price.
3 .Standard package to ensure the safe transportation.
4. Professional service.

Why choose us?
1. Production
    Qualified production, competitive price, professional service. 
2. Quality
    All products are inspected 100% before shipment by relative testing equipments.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Structure: Ball Joint
Material: Alloy
Load Direction: Radial Spherical Plain Bearing
Add Lubricant: Self-lubricating
Outer Structure: Whole Outer Ring
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China supplier Bearing Manufacturer Supply Flexible Rod End Ball Joint Bearings   with Good qualityChina supplier Bearing Manufacturer Supply Flexible Rod End Ball Joint Bearings   with Good quality
editor by CX 2024-04-24

China Custom Motorcycle Spare Part Bearing 6204 6206 6300 6301 6304 Ball Bearing for Motorcycle Parts bearing assembly

Product Description

Motorcycle Spare Part Bearing 6304 Ball Bearing for Motorcycle Parts

Introduction of HangZhou HangZhoung:

HangZhou HangZhoung Auto Parts Trading Co., Ltd. was established in 2009, located in Xihu (West Lake) Dis. District, HangZhou City, construction area of 3000 square meters, the existing domestic and foreign staff more than 200. The company mainly engaged in motorcycle parts, involving the sales of nearly 5000 parts of more than 30 models; It also owns 6 independent brands such as HangZhoung, Evocs, UFC, Maersk, CZPT and Hanchi. The company has set up offices in CZPT d’ivoire, Ghana and Burikina faso, and its products are sold to 7 countries in South America, Middle East, Africa and other regions.
HangZhou HangZhoung Overseas Company Profile:
HangZhoung Overseas Company was established in 2008. As the business platform of HangZhou HangZhoung motorcycle parts overseas sales, overseas companies undertake the responsibility of expanding the international market with their own brands. There are more than 160 Chinese and foreign employees. Accompanied by and with the pace of internationalization, overseas branch business has covered 16 markets such as west Africa, South America, the Middle East. At present, the company has set up overseas branches in Burkina Faso, CZPT d ‘Ivoireand Ghana, set up a motorcycle parts factory in Ouagadougou, purchased factory reserve land in West Africa, built a warehouse and purchased commercial land and industrial land in Burkina Faso.Since its establishment, the oversea company has always adhered to the concept of “charity has no boundaries, great love has no boundaries”, and has been committed to the local social welfare activities such as helping to build schools, assisting victims in disaster areas, etc. Therefore, the company has established a deep friendship with foreign customers and the local government, which has also laid a solid foundation for the company’s sustainable development.

Company Advantages

1,OEM service & owns 6 independent brands such as HangZhoung, Evocs, UFC, Maersk, CZPT and Hanchi.
2,Reliable& competitive price.
3,On time delivery & Reliable after-sales service.
4,Wide range of parts for more models available.
5,We have profession knowledge about Motorcycle parts ,more than 12 years experience in motorcycle parts.
 

MODEL NO. OUR MOTORCYCLE PRODUCTS
AX100 Cylinder Head Valve Crankshaft Piston Ring Brake Shoes Handle Switch Spark Plug Front Shock Absorber Pipe
BAJAJ100 Cylinder Kit Clutch Camshaft Wheel Hub Brake Pad Sprocket Kit Ignition Coil Rear Shock Absorber
CGL Piston Kit Motor Clutch Plate Side Mirror Brake Cylinder Speedometer Lighting series Front Shock Absorber
JY110 Carburetor Tyre Timing Chain Wheel Rim Lock System Chain Fuel Tank Transmission Shaft Assy

FAQ
1. How to get the best price?
Re: The bulk order price can be negotiated.
We will quote the latest best price according to the customer final purchase list.

2.Can I get a sample to check your quality?
Re:  Sure! For most product sample for free, but all other cost need to pay by customer.
Freight will be returned in first order.

3.What is your delivery time?
Re: Normally 30 working days 
Generally speaking, we suggest that you start inquiry 1 months before the date you would like to get the products at your country.

4.What is your terms of packing?
Re:Generally, we pack our products in Our Brand Paper Carton Box. If you have legally registered patent,we can pack the products in your branded boxes after getting your authorization letters. 

Thx for reading ours introduction. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Motorcycle Ball
Material: Bearing Steel
Certification: ISO9001:2001
Samples:
US$ 2.5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China Custom Motorcycle Spare Part Bearing 6204 6206 6300 6301 6304 Ball Bearing for Motorcycle Parts   bearing assemblyChina Custom Motorcycle Spare Part Bearing 6204 6206 6300 6301 6304 Ball Bearing for Motorcycle Parts   bearing assembly
editor by CX 2024-04-24

China Standard 608 High Precision Deep Groove Ball Bearing for Transmission Case bearing air

Product Description

Product Description

Deep Groove Ball Bearing, formerly known as single row radial ball bearing, is the most widely used rolling bearing. Its characteristics are low frictional resistance, high rotational speed, and can be used for bearing radial loads or combined radial and axial loads, as well as for bearing axial loads, such as low-power electric motors, car and tractor gearboxes, machine tool gearboxes, general machines, tools, etc.
Deep Groove Ball Bearing mainly bears radial load, and can also bear radial load and axial load at the same time. When it only bears radial load, the contact angle is zero. When the Deep Groove Ball Bearing has a large radial clearance, it has the performance of angular contact bearing, and can withstand a large axial load. The friction coefficient of Deep Groove Ball Bearing is very small, and the limiting speed is also very high.

Product Advantages

1.Double sided steel seals.
  *The sealing material is made of stainless steel metal;
  *It can effectively prevent foreign matter from entering the outside of the bearing;
  *Prevent damage inside the bearing and damage the bearing.
2.Double sided rubber seals.
   *The sealing materials is a combination of skeleton rubber;
   *It can effectively prevent foreign matter in the bearing,and impurities intrude into the bearing;
   *Causes damage inside the bearing and damages the bearing.
3.Open type bearing no seals.
   *No seals can directly see bare steel balls;
   *Suitable for sealed environments;such as gearboxes,oily environments.

Our Advantages

 

1. Suitable Sample bearing;
2. ISO Standard;
3. Bearing Small order accepted;
4. In Stock bearing;
5. OEM/ODM bearing service;
6. Professional: more than 20 years of manufacture bearing;
7. Customized bearing, Customer’s bearing drawing, or samples accepted;
8. Competitive price bearing: factory outlet.

Product Model

Deep Groove Ball Bearing 6000 Series
Bearing No. Shape Dimensions (mm) Basic Load Rating (KN) Max Speed (RPM) Weight(kg)
Bore Outer Width Dynamic Cr Static Cor Grease  lubricant Oil lubricant
d D B
6000 Series
606 6 17 6 1.95 0.72 30000 38000 0.0057
607 7 19 6 2.88 10.80 28000 36000 0.0071
608 8 22 7 3.32 1.38 26000 34000 0.011
609 9 24 7 3.35 1.40 22000 30000 0.014
6000 10 26 8 4.58 1.98 20000 28000 0.018
6001 12 28 8 5.10 2.38 19000 26000 0.02
6002 15 32 9 5.58 2.85 18000 24000 0.026
6003 17 35 10 6.00 3.25 17000 22000 0.036
6004 20 42 12 9.38 5.02 15000 19000 0.069
6005 25 47 12 10.10 5.85 13000 17000 0.075
6006 30 55 13 10.18 6.91 10000 14000 0.116
6007 35 62 14 12.47 8.66 9000 12000 0.155
6008 40 68 15 13.10 9.45 8500 11000 0.185
6009 45 75 16 16.22 11.96 8000 10000 0.231
6571 50 80 16 16.94 12.95 7000 9000 0.250
6011 55 90 18 23.28 17.86 7000 8500 0.362
6012 60 95 18 24.35 19.35 6300 7500 0.385
6013 65 100 18 24.66 19.74 6000 7000 0.410
6014 70 110 20 29.68 24.20 5600 6700 0.575
6015 75 115 20 30.91 26.06 5300 6300 0.603
6016 80 125 22 36.57 31.36 5000 6000 0.921
6017 85 130 22 39.04 33.75 5000 6000 0.848
6018 90 140 24 44.63 39.16 4800 5600 1.103
6019 95 145 24 44.45 39.16 4500 5300 1.156
6571 100 150 24 49.58 44.08 4300 5300 1.174
6571 105 160 26 55.32 49.77 4000 4800 1.520
6571 110 170 28 62.99 57.39 3800 4500 1.891
623 3 10 4 0.5 0.2156 38000 48000 0.0015
624 4 13 5 1.15 0.40 36000 45000 0.0032
625 5 16 5 1.88 0.68 32000 40000 0.0048
626 6 19 6 2.8 1.05 28000 36000 0.0075
627 7 22 7 3.28 1.35 26000 34000 0.012
628 8 24 8 3.35 1.40 24000 32000 0.017
629 9 26 8 4.45 1.95 22000 30000 0.019
6200 10 30 9 5.1 2.38 19000 26000 0.571
6201 12 32 10 6.82 3.05 18000 24000 0.034
6202 15 35 11 7.65 3.72 17000 22000 0.043
6203 17 40 12 9.58 4.47 16000 20000 0.062
6204 20 47 14 9.88 6.20 14000 18000 0.102
6205 25 52 15 10.78 6.98 12000 16000 0.120
6206 30 62 16 14.97 10.04 9500 13000 0.190
6207 35 72 17 19.75 13.67 8500 11000 0.270
6208 40 80 18 22.71 15.94 8000 10000 0.370
6209 45 85 19 24.36 17.71 7000 9000 0.380
6210 50 90 20 26.98 19.84 6700 8500 0.450
6211 55 100 21 33.37 25.11 6000 7500 0.603
6212 60 110 22 36.74 27.97 5600 7000 0.789
6213 65 120 23 44.01 34.18 5000 6300 0.990
6214 70 125 24 46.79 37.59 4800 6000 1.084

Company Profile

ZheJiang Dente International Trade Co.,Ltd is a comprehensive enterprise with factory and trading company. It was founded in HangZhou City, ZheJiang province, China. HangZhou city is also well known as Kite Capital of the World. Since the establishment, we are focusing on import and export business based in our own bearing factory which is located in HangZhou City where is the largest bearing wholesale base in China.
Besides of our own factory and professional exporting experiences, we also cooperate with more than 500 bearing factories to meet customers’ various requirements. Therefore, our company is with the advantage of providing bearings with high quality, short delivery period, but competitive price. Our products have been selling well in more than 50 countries in the world, which includes Europe, North America, South America, Australia, Africa, etc.
Our company mission is to supply high-quality bearings with competitive price for customers. And our company philosophy is based on excellent service, quick feedback, working sincerely, and team work. We hope to create a beautiful future together with customers.

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, and we will try our best to meet customer needs. Our company is mainly based on wholesale sales, most customers orders are more than 1 ton.
2. What is your latest delivery time?
Most orders will be shipped within 3-10 days of payment being received.
3. What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.
4. What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.
5. Which payment method does your company support?
Do our best to meet customer needs.
6. How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, Whatsapp account or WeChat account, we will contact you as soon as possible and provide the detailed information you need.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: All
Aligning: Non-Aligning Bearing
Separated: Unseparated
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Chrome Steel
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

How do Ceramic Ball Bearings Compare to Traditional Steel Ball Bearings in Terms of Performance?

Ceramic ball bearings and traditional steel ball bearings have distinct characteristics that can impact their performance in various applications. Here’s a comparison of how these two types of bearings differ in terms of performance:

  • Material Composition:

Ceramic Ball Bearings:

Ceramic ball bearings use ceramic rolling elements, typically made from materials like silicon nitride (Si3N4) or zirconium dioxide (ZrO2). These ceramics are known for their high hardness, low density, and resistance to corrosion and wear.

Traditional Steel Ball Bearings:

Traditional steel ball bearings use steel rolling elements. The type of steel used can vary, but common materials include chrome steel (52100) and stainless steel (440C). Steel bearings are known for their durability and strength.

  • Friction and Heat:

Ceramic Ball Bearings:

Ceramic bearings have lower friction coefficients compared to steel bearings. This results in reduced heat generation during operation, contributing to higher efficiency and potential energy savings.

Traditional Steel Ball Bearings:

Steel bearings can generate more heat due to higher friction coefficients. This can lead to increased energy consumption in applications where efficiency is crucial.

  • Weight:

Ceramic Ball Bearings:

Ceramic bearings are lighter than steel bearings due to the lower density of ceramics. This weight reduction can be advantageous in applications where minimizing weight is important.

Traditional Steel Ball Bearings:

Steel bearings are heavier than ceramic bearings due to the higher density of steel. This weight may not be as critical in all applications but could impact overall equipment weight and portability.

  • Corrosion Resistance:

Ceramic Ball Bearings:

Ceramic bearings have excellent corrosion resistance, making them suitable for applications in corrosive environments, such as marine or chemical industries.

Traditional Steel Ball Bearings:

Steel bearings are susceptible to corrosion, especially in harsh environments. Stainless steel variants offer improved corrosion resistance but may still corrode over time.

  • Speed and Precision:

Ceramic Ball Bearings:

Ceramic bearings can operate at higher speeds due to their lower friction and ability to withstand higher temperatures. They are also known for their high precision and low levels of thermal expansion.

Traditional Steel Ball Bearings:

Steel bearings can operate at high speeds as well, but their heat generation may limit performance in certain applications. Precision steel bearings are also available but may have slightly different characteristics compared to ceramics.

  • Cost:

Ceramic Ball Bearings:

Ceramic bearings are generally more expensive to manufacture than steel bearings due to the cost of ceramic materials and the challenges in producing precision ceramic components.

Traditional Steel Ball Bearings:

Steel bearings are often more cost-effective to manufacture, making them a more economical choice for many applications.

In conclusion, ceramic ball bearings and traditional steel ball bearings offer different performance characteristics. Ceramic bearings excel in terms of low friction, heat generation, corrosion resistance, and weight reduction. Steel bearings are durable, cost-effective, and widely used in various applications. The choice between the two depends on the specific requirements of the application, such as speed, precision, corrosion resistance, and budget considerations.

ball bearing

What Factors should be Considered when Selecting a Ball Bearing for a Particular Application?

Selecting the right ball bearing for a specific application involves careful consideration of various factors to ensure optimal performance, longevity, and reliability. Here are the key factors that should be taken into account:

  • Load Type and Magnitude:

Determine the type of load (radial, axial, or combined) and the magnitude of the load that the bearing will need to support. Choose a bearing with the appropriate load-carrying capacity to ensure reliable operation.

  • Speed and Operating Conditions:

Consider the rotational speed of the application and the operating conditions, such as temperature, humidity, and exposure to contaminants. Different bearing types and materials are suited for varying speeds and environments.

  • Accuracy and Precision:

For applications requiring high accuracy and precision, such as machine tool spindles or optical instruments, choose high-precision bearings that can maintain tight tolerances and minimize runout.

  • Space Limitations:

If the application has limited space, choose miniature or compact ball bearings that can fit within the available dimensions without compromising performance.

  • Thrust and Radial Loads:

Determine whether the application requires predominantly thrust or radial load support. Choose the appropriate type of ball bearing (thrust, radial, or angular contact) based on the primary load direction.

  • Alignment and Misalignment:

If the application experiences misalignment between the shaft and housing, consider self-aligning ball bearings that can accommodate angular misalignment.

  • Mounting and Installation:

Consider the ease of mounting and dismounting the bearing. Some applications may benefit from features like flanges or snap rings for secure installation.

  • Lubrication and Maintenance:

Choose a bearing with appropriate lubrication options based on the application’s speed and temperature range. Consider whether seals or shields are necessary to protect the bearing from contaminants.

  • Environmental Conditions:

Factor in the operating environment, including exposure to corrosive substances, chemicals, water, or dust. Choose materials and coatings that can withstand the specific environmental challenges.

  • Bearing Material:

Select a bearing material that suits the application’s requirements. Common materials include stainless steel for corrosion resistance and high-carbon chrome steel for general applications.

  • Bearing Arrangement:

Consider whether a single-row, double-row, or multiple bearings in a specific arrangement are needed to accommodate the loads and moments present in the application.

By carefully evaluating these factors, engineers and designers can choose the most suitable ball bearing that aligns with the specific demands of the application, ensuring optimal performance, durability, and overall operational efficiency.

China Standard 608 High Precision Deep Groove Ball Bearing for Transmission Case   bearing airChina Standard 608 High Precision Deep Groove Ball Bearing for Transmission Case   bearing air
editor by CX 2024-04-24

China supplier Genuine Motorcycle Parts Bearing Radial Ball TNT for Honda Spacy 110 with Great quality

Product Description

Genuine Motorcycle Parts Bearing Radial Ball for Honda Spacy 110

Product Specification:

Product Name Bearing Radial Ball TNT
Item No. 91005-GFM-901-M1
Model HONDA CZPT 110 Spacy 110 WH110T-2
Displacement 110cc
Size Normal Standard
Quality Guarantee 12 Months(Testing before delivery)
Delivery Within 30-45 days after deposit received
Packing  Neutral packing or As customer requirement,
blank packing
Payment Term T/T

Honda Model:
We are the leading exporter of Motorcycle Parts from China. We have all kinds of spare parts. If you want to purchase spare parts,please feel free to ask me.
If you can not confirm the parts, you can tell me the part number.

  Model
scooter WH100T-G SCR100(KR) Spacy100
WH110T-2 Spacy110 SCR110(KR)
WH100T-K
WH110T-3 NSC110 Breeze Vision110(Europe,Vietnam)
Spacy I (Thailand)
WH110T-A Lead110 NHX110
WH110T-5
WH110T-2A
WH110T-6 Spacy Alpha 110(Turkey)
SCR Alpha 110(KR)
WH125T-5 Fizy125
WH125T-6 Elite 125
WH125T-7 Activa S 125
WH125T-3A
SDH50QT-41/43 TODAY 50
SDH125-22
SDH125-27 DIO125
SDH125-28 MOJET125
SDH125-31 RX125
PCX125/150
SH125/150
CLICK 110
CLICK 125/VARIO
AIR BLADE
SUPER CUB
Motorcycle SDH150-C CBF150
SDH125-53 CB125 ACE
SDH125-51 CB125 E
SDH150GY XR150L
XR125L
WH125-16 CB125F
WH125-7-8
CB1/CGX125/ACE125
Cub SDH110-16 WAVE110 PGM-FI
SDH110-19 WAVE110 Carb
WAVE125 Carb
WAVE125 I ANF125

Company Information:

Exhibition Show:
We attend professional motorcycle parts trade fair to promote our products. A great many of customers would come to our booth, show interest in our products and are willing to try our products. Trial order to test quality is warmly welcomed too!

Certification:

Warehouse:

Packaging & Shipping:

Our Services:

FAQ:

Contact

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 3 Months
Warranty: Within Seven Days of Taking Delivery
Type: Bearing Ball
Start: Electric
Cylinder NO.: 1 Cylinder
Stroke: Four Stroke
Samples:
US$ 0.97/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Are there Specific Maintenance Practices to Ensure the Longevity of Ball Bearings?

Maintaining ball bearings is essential to ensure their longevity, reliable performance, and prevent premature failure. Proper maintenance practices can extend the lifespan of ball bearings and the equipment they are used in. Here are specific maintenance practices to consider:

  • Regular Lubrication:

Implement a regular lubrication schedule using the appropriate lubricant for the application. Lubrication reduces friction, prevents wear, and helps dissipate heat. Follow manufacturer guidelines for lubricant type, quantity, and frequency.

  • Clean Environment:

Keep the operating environment clean and free from contaminants. Dust, dirt, and debris can infiltrate bearings and cause damage. Use seals or shields to protect bearings from contaminants, especially in harsh environments.

  • Proper Installation:

Ensure correct installation of bearings using proper tools and techniques. Improper installation can lead to misalignment, uneven load distribution, and premature wear. Follow manufacturer recommendations for installation procedures.

  • Regular Inspections:

Perform routine visual inspections to check for signs of wear, damage, or contamination. Regular inspections can help identify issues early and prevent further damage. Pay attention to noise, vibration, and temperature changes.

  • Temperature Monitoring:

Monitor bearing temperatures during operation using infrared thermometers or sensors. Abnormal temperature increases can indicate inadequate lubrication, misalignment, or other problems.

  • Correct Handling:

Handle bearings with care to prevent damage during storage, transportation, and installation. Avoid dropping or subjecting them to impacts that can affect their internal components.

  • Bearing Removal and Replacement:

Follow proper procedures when removing and replacing bearings. Use appropriate tools and techniques to avoid damage to the bearing or the surrounding components.

  • Alignment Maintenance:

Maintain proper shaft and housing alignment to prevent excessive loads and wear on the bearing. Misalignment can lead to increased stress and premature failure.

  • Training and Education:

Provide training to operators and maintenance personnel on proper bearing maintenance and handling practices. Educated personnel are more likely to identify issues and perform maintenance correctly.

  • Documented Records:

Keep records of maintenance activities, inspections, lubrication schedules, and any issues encountered. This documentation helps track the bearing’s performance over time and informs future maintenance decisions.

By implementing these maintenance practices, you can ensure the longevity of ball bearings, minimize downtime, reduce operational costs, and maintain the reliability of the equipment they are a part of.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China supplier Genuine Motorcycle Parts Bearing Radial Ball TNT for Honda Spacy 110   with Great qualityChina supplier Genuine Motorcycle Parts Bearing Radial Ball TNT for Honda Spacy 110   with Great quality
editor by CX 2024-04-24

China Professional Thin Section Ball Machine Bearing (JU100XP0) double row ball bearing

Product Description


Detailed technical parameter of thin section ball machine bearings see below

Model: JU100XP0
Type: Four point contact ball thin section bearing, ball bearing
Style: dural rubber Sealed type thin section deep groove ball bearing
Material: Chrome steel
Lubrication: Self lubricated (oil or grease)
Inner diameter/bore: 10inch
Outer diameter: 10.75inch
Width/height/thickness: 0.5inch
Dynamic load rating Cr: 6980pounds
Static Load rating Cor: 22180pounds
Weight: 0.594pounds

Introduction to Kaydon thin section bearing

LYHY bearings are a professional manufacturer of substitution of imported brand thin section bearing, slim ball bearing, precison bearing, which includes 7 open series and 5 sealed series, inner hole diameter of these slim ball bearings range from 1 to 40 inches, cross-sectional dimension is from 0.1875X0.1875 to 1.000X1.000. These ball bearings have an extremely small, predominantly square cross-section, within each series, the cross-section remains constant even for larger shaft diameters and housing bores. Except the standard models, we can also design and manufacture as per customers’ requirements. With rich experience and a large collection of products, we have confidence we are CZPT to meet customers’ requirements.

Structure

Open type deep groove ball bearing
Open type angular contact bearing
Open type 4 point contact bearing
Sealed type deep groove ball bearing
Sealed 4 point contact ball bearing

Features
Thin section bearings have high precision, and very quiet and have high load carrying capacity, features of thin section bearings can be summarized as following
Excellent running accuracy
Spaces save
Low friction
High precision
Long life
Low noise and vibration
Why choose CZPT thin section bearings
A pioneer in import replaced thin bearing field, rich experience, can do design, produce, mounting guide
Small order accepted
ISO certified company
Variorum models
7*24hours hotline to help you with your cranes
Strict quality control system to ensure quality for slim ball bearing

Application
Thin section ball bearings were developed for applications where space limitations are of the utmost importance. These kind of bearings are widely used for aviation, astronomical instruments, glass manufacturing machinery, medical instrument, optical and scHangZhou instrument, satellite communication devices, textile machinery, large welding equipment, robot, semiconductor manufacturing equipment etc. Print machinery

LYHY Thin Section Bearing Packing 
Bearing surface is covered with the anti-rust oil first; and then wrapped with the plastic film;
And then packed with kraft paper and professional belts;
At last, with wooden box totally at the outer packing to invoid the rust or the moist;
We can depend on the customers demand to be packed;

Transportation:
All CZPT bearings can be usually delivered timely, usual production time is 15-50 days based on different diameters, sometimes will be in stock.

Thin Section Bearings can be transported by different transport ways, by express (such as DHL, TNT, UPS, FEDEX and so on), by air, by sea, by truck, by railway and so on.

FAQ:

Q: Are LYHY BEARINGS trading company or manufacturer?
A: CZPT BEARINGS is a professional manufacturer for slewing bearings, thin section bearings, ball bearings and rolling bearings

Q: How do LYHY BEARINGS control quality of their bearing?
A: LYHY BEARINGS has established strict quality control systems, all the products and services has passed ISO9001-2008 Quality Certificate and third party such as CCS, LR,ABS,BV

Q: What is the MOQ?
A: MOQ is 1pc, pls message us for detailed information.

Q: How about the package for CZPT bearings?
A: Standard Industrial packing in general condition (Plastic tube+ professional plastic belts+ plywood case). Accept design package when OEM.

Q: How long is the production time?
A: It takes about 7-40 days, depends on the model and quantity.

Q: How about the shipping?
A: We can arrange the shipment or you may have your own forwarder.

Q: Is sample available?
A: Yes, sample order is acceptable.

Q: Can we use our own LOGO or design on bearings?
A: Yes. OEM is acceptable for LYHY BEARINGS. We can design as per your requirements and use your own LOGO and package design.

Packages:

Type  Dimension
d D Width L1 L2
inch
JA571XP0 2.00 2.50 0.25 2.15 2.36
JA571XP0 2.50 3.00 0.25 2.65 2.86
JA030XP0 3.00 3.50 0.25 3.15 3.36
JA035XP0 3.50 4.00 0.25 3.65 3.86
JA040XP0 4.00 4.50 0.25 4.15 4.36
JA042XP0 4.25 4.75 0.25 4.40 4.61
JA045XP0 4.50 5.00 0.25 4.65 4.86
JA047XP0 4.75 5.25 0.25 4.90 5.11
JA050XP0 5.00 5.50 0.25 5.15 5.33
JA055XP0 5.50 6.00 0.25 5.65 5.86
JA060XP0 6.00 6.50 0.25 6.15 6.36
JA065XP0 6.50 7.00 0.25 6.65 6.86
JB571XP0 2.00 2.63 0.31 2.14 2.36
JB571XP0 2.50 3.13 0.31 2.64 2.86
JB030XP0 3.00 3.63 0.31 3.14 3.36
JB035XP0 3.50 4.13 0.31 3.64 3.86
JB040XP0 4.00 4.63 0.31 4.14 4.36
JB042XP0 4.25 4.88 0.31 4.39 4.66
JB045XP0 4.50 5.13 0.31 4.64 4.86
JB047XP0 4.75 5.38 0.31 4.89 5.16
JB050XP0 5.00 5.63 0.31 5.14 5.36
JB055XP0 5.50 6.13 0.31 5.64 5.86
JB060XP0 6.00 6.63 0.31 6.14 6.36
JB065XP0 6.50 7.13 0.31 6.64 6.86
JG120XP0 12.00 14.00 1.00 12.55 13.60
JG140XP0 14.00 16.00 1.00 14.55 15.60
JG160XP0 16.00 18.00 1.00 16.55 17.60
JG180XP0 18.00 20.00 1.00 18.55 19.60
JG200XP0 20.00 22.00 1.00 20.55 21.60
JU040XP0 4.00 4.75 0.50 4.15 4.55
JU042XP0 4.25 5.00 0.50 4.40 4.80
JU045XP0 4.50 5.25 0.50 4.65 5.05
JU047XP0 4.75 5.50 0.50 4.90 5.30
JU050XP0 5.00 5.75 0.50 5.15 5.55
JU055XP0 5.50 6.25 0.50 5.56 6.04
JU060XP0 6.00 6.75 0.50 6.15 6.54
JU065XP0 6.50 7.25 0.50 6.65 7.04
JU070XP0 7.00 7.75 0.50 7.15 7.54
JU075XP0 7.50 8.25 0.50 7.65 8.04
JU080XP0 8.00 8.75 0.50 8.15 8.54
JU090XP0 9.00 9.75 0.50 9.15 9.54
JU100XP0 10.00 10.75 0.50 10.15 10.54
JU110XP0 11.00 11.75 0.50 11.15 11.54
JU120XP0 12.00 12.75 0.50 12.15 12.54

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 45°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Gcr15
Samples:
US$ 350/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Challenges Associated with Noise Reduction in Ball Bearings?

Noise reduction in ball bearings is a crucial consideration, especially in applications where noise levels must be minimized for operational efficiency and user comfort. While ball bearings are designed to operate smoothly, there are several challenges associated with reducing noise in their operation:

  • Vibration:

Vibration generated by the movement of rolling elements and raceways can lead to noise. Even minor irregularities in bearing components or the mounting system can cause vibration that translates into audible noise.

  • Bearing Type and Design:

The type and design of the ball bearing can impact noise generation. For example, deep groove ball bearings are known for their quiet operation, while angular contact bearings can generate more noise due to their higher contact angles.

  • Lubrication:

Improper or inadequate lubrication can result in increased friction and wear, leading to noise. Choosing the right lubricant and maintaining proper lubrication levels are essential for reducing noise in ball bearings.

  • Bearing Clearance and Preload:

Incorrect clearance or preload settings can lead to noise issues. Excessive clearance or inadequate preload can cause the rolling elements to impact the raceways, resulting in noise during rotation.

  • Material and Manufacturing Quality:

The quality of materials and manufacturing processes can affect noise levels. Inconsistent or low-quality materials, improper heat treatment, or manufacturing defects can lead to noise generation during operation.

  • Surface Finish:

The surface finish of the rolling elements and raceways can impact noise. Rough surfaces can generate more noise due to increased friction and potential irregularities.

  • Sealing and Shielding:

Seals and shields that protect bearings can influence noise levels. While they are necessary for contamination prevention, they can also cause additional friction and generate noise.

  • Operating Conditions:

External factors such as temperature, speed, and load can influence noise levels. High speeds or heavy loads can amplify noise due to increased stress on the bearing components.

  • Wear and Deterioration:

As ball bearings wear over time, noise levels can increase. Worn components or inadequate lubrication can lead to more significant noise issues as the bearing operates.

To address these challenges and reduce noise in ball bearings, manufacturers and engineers employ various techniques, such as optimizing design, selecting suitable bearing types, using proper lubrication, maintaining accurate preload settings, and ensuring high-quality materials and manufacturing processes. Noise reduction efforts are essential to improve overall product quality, meet noise regulations, and enhance user experience in various applications.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

How does Lubrication Impact the Performance and Lifespan of Ball Bearings?

Lubrication plays a critical role in the performance and lifespan of ball bearings. Proper lubrication ensures smooth operation, reduces friction, minimizes wear, and prevents premature failure. Here’s how lubrication impacts ball bearings:

  • Friction Reduction:

Lubrication creates a thin film between the rolling elements (balls) and the raceways of the bearing. This film reduces friction by separating the surfaces and preventing direct metal-to-metal contact. Reduced friction results in lower energy consumption, heat generation, and wear.

  • Wear Prevention:

Lubricants create a protective barrier that prevents wear and damage to the bearing’s components. Without proper lubrication, the repeated rolling and sliding of the balls against the raceways would lead to accelerated wear, surface pitting, and eventual failure.

  • Heat Dissipation:

Lubricants help dissipate heat generated during operation. The rolling elements and raceways can generate heat due to friction. Adequate lubrication carries away this heat, preventing overheating and maintaining stable operating temperatures.

  • Corrosion Resistance:

Lubrication prevents moisture and contaminants from coming into direct contact with the bearing’s surfaces. This helps protect the bearing against corrosion, rust, and the formation of debris that can compromise its performance and longevity.

  • Noise Reduction:

Lubricated ball bearings operate quietly because the lubricant cushions and dampens vibrations caused by the rolling motion. This noise reduction is crucial in applications where noise levels need to be minimized.

  • Seal Protection:

Lubricants help maintain the effectiveness of seals or shields that protect the bearing from contaminants. They create a barrier that prevents particles from entering the bearing and causing damage.

  • Improved Efficiency:

Properly lubricated ball bearings operate with reduced friction, leading to improved overall efficiency. This is especially important in applications where energy efficiency is a priority.

  • Lifespan Extension:

Effective lubrication significantly extends the lifespan of ball bearings. Bearings that are properly lubricated experience less wear, reduced fatigue, and a lower likelihood of premature failure.

  • Selection of Lubricant:

Choosing the right lubricant is essential. Factors such as speed, temperature, load, and environmental conditions influence the choice of lubricant type and viscosity. Some common lubricant options include grease and oil-based lubricants.

  • Regular Maintenance:

Regular lubrication maintenance is crucial to ensure optimal bearing performance. Bearings should be inspected and relubricated according to manufacturer recommendations and based on the application’s operating conditions.

In summary, proper lubrication is essential for the optimal performance, longevity, and reliability of ball bearings. It reduces friction, prevents wear, dissipates heat, protects against corrosion, and contributes to smooth and efficient operation in various industrial and mechanical applications.

China Professional Thin Section Ball Machine Bearing (JU100XP0)   double row ball bearingChina Professional Thin Section Ball Machine Bearing (JU100XP0)   double row ball bearing
editor by CX 2024-04-23

China Custom CZPT Rod End Ball Joint Bearing POS5 Phs5 POS5a POS5la double row ball bearing

Product Description

Brand Name

SHAC

Precision Rating

g6

Material

CK45 Zinc plated

Model Number

PHS.POS.SI“`TK.SA“`TK,SQ

Quality Guarantee

One year

HS Code

8483300090

Customized

OEM avalialbe

Products packing

According to our customer’s request,Plastic bag+inner box.

Payment terms

TT, L/C, Western Union, Paypal

Deliver time

Base on customer required quantity,by negotiated

Samples

free samples and sample catalogue available

Ball Screw Application                                                         

machine tools,Industrial Machinery,Pringting Machine,Paper-processing machine,automatic machines,textiles machines,electronic machinery,transport machinery,Robot,etc

Model Number as Follows:

POS:  POS5 POS6 POS8 POS10 POS12 POS14 POS16
  POS18 POS20 POS22 POS25 POS28 POS30  
PHS: PHS5 PHS6 PHS8 PHS10 PHS12 PHS14 PHS16
  PHS18 PHS20 PHS22 PHS25 PHS28 PHS30  
SI···TK SI5TK SI6TK SI8TK SI10TK SI12TK SI14TK SI16TK
  SI18TK SI20TK SI22TK SI25TK SI28TK SI30TK  
SA···TK SA5TK SA6TK SA8TK SA10TK SA12TK SA14TK SA16TK
  SA18TK SA20TK SA22TK SA25TK SA28TK SA30TK  
 
   

Our factory

We are ZheJiang technology joint venture factory in China, professional manufacturer linear CZPT and ball screw to global market with good quality and reasonable price. with ISO9001 & ISO14001 approved.
Mainly products SHAC brand linear CZPT is interworking with HIWIN linear guide,ball screw parameter same as TBI ballscrew. We already export our products to some market such as USA, Europe, East Korea,South America, North America,Southeast Asia,Indian,etc.

Q1: Do you accept small order?

A: If your order bearings are our standard size, we accept even 1pcs.
Q2: Can I get free sample?
A: Yes. Limited,free sample available, freight cost must be paid by your side.
Q3: Are you factory or trade company?
A: We are manufacturer, ZheJiang technology team joint venture factory.
Q4: Can we mark our brand on your bearings and packing?
A: Yes, we support OEM your brand, the details let’s negotiation.
Q5: How long is the delivery?
A: Small orders usually takes 3-7 days,big order usually 20-35 days, depending on orders quantity and whether are standard size.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Structure: Rod End
Material: Bearing Steel
Load Direction: Radial Spherical Plain Bearing
Add Lubricant: Non Self-lubricating
Outer Structure: Whole Outer Ring
Customization:
Available

|

Customized Request

ball bearing

What are the Common Signs of Wear or Damage in Ball Bearings that Indicate the Need for Replacement?

Ball bearings are subjected to wear and stress during operation, and over time, they may exhibit signs of damage or deterioration that warrant replacement. Recognizing these signs is crucial to prevent catastrophic failure and ensure safe and reliable operation. Here are the common signs of wear or damage in ball bearings:

  • Unusual Noise:

If you hear unusual grinding, clicking, or rumbling noises coming from the bearing during operation, it may indicate worn-out or damaged components. Unusual noise suggests that the bearing is no longer operating smoothly.

  • Vibration:

Excessive vibration in the machinery can be a sign of bearing wear. Vibrations can result from uneven wear, misalignment, or damaged components within the bearing.

  • Increased Temperature:

Higher operating temperatures than usual may indicate increased friction due to inadequate lubrication, wear, or other issues. Monitoring the bearing’s temperature can help identify potential problems.

  • Irregular Movement:

If you notice irregular movement, jerking, or sticking during rotation, it could be a sign that the bearing is no longer operating smoothly. This may be due to damaged rolling elements or raceways.

  • Reduced Performance:

If the machinery’s performance has decreased, it may be due to a compromised bearing. Reduced efficiency, increased energy consumption, or a decline in overall performance could be indicators of bearing wear.

  • Visible Wear or Damage:

Inspect the bearing for visible signs of wear, such as pitting, scoring, or discoloration on the rolling elements or raceways. Severe wear or damage is a clear indication that the bearing needs replacement.

  • Leakage or Contamination:

If there is evidence of lubricant leakage, contamination, or the presence of foreign particles around the bearing, it suggests that the seal or shield may be compromised, leading to potential damage.

  • Looseness or Excessive Play:

If you can feel excessive play or looseness when manually moving the bearing, it could indicate worn-out components or misalignment.

  • Reduced Lifespan:

If the bearing’s expected lifespan is significantly shorter than usual, it may be due to inadequate lubrication, excessive loads, or improper installation, leading to accelerated wear.

  • Frequent Failures:

If the bearing is consistently failing despite regular maintenance and proper use, it could indicate a chronic issue that requires addressing, such as inadequate lubrication or misalignment.

It’s important to conduct regular inspections, monitor performance, and address any signs of wear or damage promptly. Replacing worn or damaged ball bearings in a timely manner can prevent further damage to machinery, reduce downtime, and ensure safe and efficient operation.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Custom CZPT Rod End Ball Joint Bearing POS5 Phs5 POS5a POS5la   double row ball bearingChina Custom CZPT Rod End Ball Joint Bearing POS5 Phs5 POS5a POS5la   double row ball bearing
editor by CX 2024-04-23

China OEM NSK, NTN. Koyo, Angular Contact Ball Bearings, 7296c, 7296CTA, 7296ceta, 7296acm, B7296c, bearing driver

Product Description

Angular contact ball bearings have inner and outer ring raceways that are displaced relative to each other in the direction of the bearing axis. This means that these bearings are designed to accommodate combined loads, i.e. simultaneously acting radial and axial loads.
The axial load carrying capacity of angular contact ball bearings increases as the contact angle increases. The contact angle is defined as the angle between the line joining the points of contact of the ball and the raceways in the radial plane, along which the combined load is transmitted from 1 raceway to another, and a line perpendicular to the bearing axis.

     The most commonly used designs are:

  • single row angular contact ball bearings.
  • double row angular contact ball bearings.
  • four-point contact ball bearings.

 

Part No. d/mm D/mm B/mm Load Rating(KN) Limited  Speed(r/min) Load Rating(KN) Limited  Speed(r/min)
Cr/KN Cor/KN Grease  Oil  Cr/KN Cor/KN Grease  Oil 
718 serie       α=15°(C) α=25°(AC)
71800 10 19 5 1.8 1.1 75000 120000 1.7 1.1 70000 110000
71801 12 21 5 2 1.4 70000 110000 1.9 1.3 63000 95000
71802 15 24 5 2.2 1.8 60000 90000 2.1 1.7 53000 80000
71803 17 26 5 2.3 1.9 53000 80000 2.1 1.8 50000 75000
71804 20 32 7 3.9 3.4 45000 67000 3.7 3.2 40000 60000
71805 25 37 7 4.2 4.1 38000 56000 3.9 3.9 34000 50000
71806 30 42 7 4.4 4.8 32000 48000 4.1 4.5 28000 43000
71807 35 47 7 4.6 5.5 26000 40000 4.3 5.2 24000 38000
71815 75 95 10 14.2 21.7 12000 19000 13.3 20.5 11000 18000
71816 80 100 10 14.5 23.1 11000 18000 13.6 21.8 9500 16000
71817 85 110 13 21.5 32.2 10000 17000 20.2 30.5 9000 15000
71818 90 115 13 21.7 33.5 9500 16000 20.4 31.6 8500 14000
71819 95 120 13 21.9 34.7 9000 15000 20.6 32.8 8500 14000
71820 100 125 13 22.5 37 8500 14000 21.2 34.9 8000 13000
71821 105 130 13 22.7 38.3 8500 14000 21.3 36.1 8000 13000
71822 110 140 16 31.8 51.6 8000 13000 29.9 48.7 7500 12000
71824 120 150 16 33.1 56.9 7000 11000 31.1 53.7 6700 10000
71826 130 165 18 38.7 67.6 6700 10000 36.3 63.8 6000 9000
71828 140 175 18 44.8 79.2 6000 9000 42 74.7 5600 8500
71830 150 190 20 51.2 92 5600 8500 48 86.8 5000 7500
71832 160 200 20 52.4 97.7 5000 7500 49.2 92.2 4800 7000
71834 170 215 22 66.5 123.4 4800 7000 62.4 116.5 4300 6300
71836 180 225 22 83.8 151.6 4800 7000 78.6 143 4300 6300
71838 190 240 24 100 179 4500 6700 94.4 169.2 4000 6000
71840 200 250 24 102.5 189.3 4300 6300 96.2 178.6 3800 5600
71844 220 270 24 106.4 209.3 3800 5600 99.8 197.4 3400 5000
71848 240 300 28 145 277 3400 5000 136 261 3000 4500
71852 260 320 28 148.8 299.3 3100 4600 139.6 282.3 2700 4100
71856 280 350 33 182 363.8 2800 4100 170.8 343.3 2400 3700

 

Part No. d/mm D/mm B/mm Load Rating(KN) Limited  Speed(r/min) Load Rating(KN) Limited  Speed(r/min)
Cr/KN Cor/KN Grease  Oil  Cr/KN Cor/KN Grease  Oil 
719 serie       α=15°(C) α=25°(AC)
71907 35 55 10 11 10.9 26000 40000 10.4 10.3 20000 34000
H71907 35 55 10 7.7 5.4 36000 53000 7.4 5.1 30000 45000
H71907/HQ1 35 55 10 7.7 5.4 40000 60000 7.4 5.1 34000 50000
71908 40 62 12 14 14.2 20000 34000 13.3 13.5 18000 30000
H71908 40 62 12 9.8 7 30000 45000 9.3 6.6 26000 40000
H71908/HQ1 40 62 12 9.8 7 34000 50000 9.3 6.6 28000 43000
71909 45 68 12 14.7 16.1 18000 30000 13.9 15.2 17000 28000
H71909 45 68 12 10.3 7.7 26000 40000 9.7 7.3 22000 36000
H71909/HQ1 45 68 12 10.3 7.7 28000 43000 9.7 7.3 26000 40000
71910 50 72 12 19 21.2 17000 28000 17.9 20.1 15000 24000
H71910   72 12 13.2 10.2 22000 36000 12.5 9.5 19000 32000
H71910/HQ1 50 72 12 13.2 10.2 26000 40000 12.5 9.5 22000 36000
71911 55 80 13 23.7 27.4 15000 24000 22.4 26 14000 22000
H71911 55 80 13 16.2 12.5 19000 32000 15.2 11.8 16000 26000
H71911/HQ1 55 80 13 16.2 12.5 22000 36000 15.2 11.8 22000 36000
71912 60 85 13 24.8 30.3 14000 22000 23.3 28.7 13000 20000
H71912 60 85 13 16.5 13.8 18000 30000 15.8 13.2 15000 24000
H71912/HQ1 60 85 13 16.5 13.8 19000 32000 15.8 13.2 20000 34000
71913 65 90 13 25.1 31.9 13000 20000 23.6 30.2 12000 19000
H71913 65 90 13 16.8 14.5 17000 28000 16.2 13.8 15000 24000
H71913/HQ1 65 90 13 16.8 14.5 19000 32000 16.2 13.8 17000 28000
71914 70 100 16 34.5 43.4 12000 19000 32.6 41.2 11000 18000
H71914 70 100 16 20.8 17.8 16000 26000 19.8 16.8 13000 20000
H71914/HQ1 70 100 16 20.8 17.8 19000 32000 19.8 16.8 17000 28000
71915 75 105 16 25 45.6 11000 18000 33 43.2 95000 16000
H71915 75 105 16 21.8 19.2 15000 24000 20.5 18.2 13000 20000
H71915/HQ1 75 105 16 21.8 19.2 17000 28000 20.5 18.2 15000 24000
71916 80 110 16 35.5 47.8 10000 17000 33.5 45.3 9000 15000
H71916 80 110 16 22.5 20.8 14000 22000 21.2 19.5 12000 19000
H71916/HQ1 80 110 16 22.5 20.8 16000 26000 21.2 19.5 14000 24000
71917   120 18 46.5 61.9 9500 16000 43.8 58.6 8500 14000
H71917 85 120 18 26.2 24.2 13000 20000 24.8 22.8 11000 18000
H71917/HQ1 85 120 18 26.2 24.2 15000 24000 24.8 22.8 13000 20000
71918 90 125 18 47.2 64.8 9000 15000 44.5 61.4 8000 13000
H71918 90 125 18 27.2 26.2 13000 20000 25.5 24.5 11000 18000
H71918/HQ1 90 125 18 27.2 26.2 15000 24000 25.5 24.5 13000 20000
71919 95 130 18 47.9 67.8 9000 15000 45.2 64.1 8000 13000
H71919 95 130 18 27.2 26.8 12000 19000 25.8 25.5 11000 18000
H71919/HQ1 95 130 18 27.2 26.8 14000 22000 25.8 25.5 13000 20000
71920 100 140 20 60.4 84.4 8500 14000 56.9 79.9 8000 13000
H71920 100 140 20 40.2 37.5 11000 18000 37.8 35.5 9000 15000
H71920/HQ1 100 140 20 40.2 37.5 13000 20000 37.8 35.5 11000 18000
71921 105 145 20 61.4 88.2 8000 13000 57.8 83.5 7500 12000
H71921 105 145 20 40.8 39.2 10000 17000 38.5 36.8 8500 14000
H71921/HQ1 105 145 20 40.8 39.2 12000 19000 38.5 36.8 10000 17000
71922 110 150 20 62.3 91.9 7500 12000 58.7 87 7000 11000
H71922 110 150 20 41.2 40.5 9000 15000 39.2 38.2 7500 12000
H71922/HQ1 110 150 20 41.2 40.5 11000 18000 39.2 38.2 9500 16000
71924 120 165 22 73.7 107.6 7000 11000 69.5 101.9 6700 10000
H71924 120 165 22 43.2 44.8 8500 14000 40.5 42.5 7500 12000
H71924/HQ1 120 165 22 43.2 44.8 10000 17000 40.8 42.5 9000 15000
71926 130 180 24 76.3 117.1 6700 10000 71.9 110.9 6000 9000
H71926 130 180 24 53.2 56.5 8000 13000 50.2 53.5 7500 12000
H71926/HQ1 130 180 24 53.2 56.5 9000 15000 50.2 53.5 8000 14000
71928 140 190 24 78.9 126.4 6000 9000 74.4 119.7 5600 8500
H71928 140 190 24 53.8 59.2 7000 11000 50.8 55.8 6700 10000
H71928/HQ1 140 190 24 53.8 59.2 8000 13000 50.8 55.8 7500 12000
71930 150 210 28 118.2 175.1 5600 8500 111.4 165.8 5000 7500
H71930 150 210 28 65.2 72.8 6700 10000 61.5 68.8 6000 9000
H71930/HQ1 150 210 28 65.2 72.8 7500 12000 61.5 68.8 7000 11000
71932 160 220 28 123.6 191.2 5000 7500 116.5 181.1 4800 7000
H71932 160 220 28 66.2 75.8 6000 9000 62.5 71.5 5600 8500
H71932/HQ1   220 28 66.2 75.8 7000 11000 62.5 71.5 6700 10000
71934 170 230 28 125.7 200 4800 7000 118.5 189.4 4300 6300
H71934 170 230 28 66.8 78.8 5600 8500 63.2 74.5 5000 7500
H71934/HQ1 170 230 28 66.8 78.8 6700 10000 63.2 74.2 6000 9000
71936 180 250 33 159.7 249.1 4500 6700 150.6 235.9 4000 6000
H71936 180 250 33 79.5 95.2 5000 7500 75.2 89.8 4800 7000
H71936/HQ1 180 250 33 79.5 95.2 6000 9000 75.2 89.8 5600 8500
71938 190 260 33 162.8 260.8 4300 6300 153.5 247 3800 5600
H71938 190 260 33 80.5 98.5 4800 7000 76.2 93.2 4300 6300
H71938/HQ1 190 260 33 80.5 98.5 5600 8500 76.2 93.2 5000 7500
71940 200 280 38 198.4 311.4 3800 5600 187.1 294.9 3600 5300
H71940 200 280 38 82.8 105.5 4500 6700 78.2 99.5 4000 6000
H71940/HQ1 200 280 38 82.8 105.5 5000 7500 78.2 99.5 4500 6700
71944 220 300 38 206.6 341.1 3600 5300 194.8 323 3200 4800
H71944 220 300 38 96.9 125.4 4300 6300 91.5 118.4 3800 5600
H71944/HQ1 220 300 38 96.9 125.4 5000 7500 91.5 118.4 4300 6300
71948 240 320 38 219.2 384.2 3200 4800 206.7 363.8 3000 4500
H71948 240 320 38 153 216 3900 5800 146 200 3500 5200
H71948/HQ1 240 320 38 153 216 4500 6500 146 200 4000 5800
71952 260 360 46 284.6 528.8 3000 4500 268.3 500.8 2600 4000
71956 280 380 46 288.7 554.6 2600 4000 272.2 525.5 2200 3600

 

Mod. No. d D Height Cr Cor Grease Oil Weight
(mm) (mm) (mm) (kN) (kN) (r/min) (r/min) (kg)  
7571C 50 80 16 26 21.9 13000 17000 0.29
7571AC 50 80 16 23.6 20.1 9200 11000 0.29
7210C 50 90 20 42.8 31.8 12000 16000 0.485
7210AC 50 90 20 39.4 41.3 8500 11000 0.485
7210B 50 90 20 37.535.7 26.7 6400 8500 0.485
7310B 50 110 27 64.4 44.3 5500 7300 1.14
7410B 50 130 31 90.2 60.4 4400 6000 1.92
7011C 55 90 18 34.1 28.6 11000 15000 0.42
7011AC 55 90 18 31.1 26.3 8300 10000 0.42
7211C 55 100 21 52.9 40.2 11000 14000 0.635
7211AC 55 100 21 48.7 37.1 7600 9500 0.635
7211B 55 100 21 44.1 33.8 5700 7600 0.635
7311B 55 120 29 74.3 52 5000 6700 1.45
7012C 60 95 18 35 30.6 11000 14000 0.45
7012AC 60 95 18 31.9 28.1 7700 9700 0.45
7212C 60 110 22 64 49.5 9500 13000 0.82
7212AC 60 110 22 58.9 45.7 6900 8600 0.82
7212B 60 110 22 53.4 41.6 5100 6900 0.82
7312B 60 130 31 84.9 60.3 4600 6200 1.81
7412B 60 150 35 119 86.7 3700 5100 2.85
7013C 65 100 18 37.1 34.3 10000 13000 0.47
7013AC 65 100 18 33.7 31.4 7200 9000 0.47
7213C 65 120 23 73.1 58.7 8900 12000 1.02
7213AC 65 120 23 67.3 54.2 6400 8000 1.02
7213B 65 120 23 60.9 49.3 4800 6400 1.02
7313B 65 140 33 96.1 69.3 4300 5800 2.22
7014C 70 110 20 46.9 43 9200 12000 0.66
7014AC 70 110 20 42.7 39.4 6600 8300 0.66
7214C 70 125 24 75.9 60.2 8400 11000 1.12
7214AC 70 125 24 69.8 55.6 6100 7600 1.12
7214B 70 125 24 63.2 50.6 4600 6100 1.12
7314B 70 150 35 108 78.9 4000 5400 2.7
7015C 75 115 20 48 45.6 8700 11000 0.69
7015AC 75 115 20 43.6 41.7 6300 7800 0.69
7215C 75 130 25 86.1 70.6 8000 11000 1.23
7215AC 75 130 25 79.2 65.2 5800 7200 1.23
7215B 75 130 25 71.7 59.3 4300 5800 1.23
7915B 75 160 37 125 98.5 3400 4500 3.3
7016C 80 125 22 58.7 55.3 8000 11000 0.93
7016AC 80 125 22 53.4 50.6 5800 7200 0.93
7216C 80 140 26 92.8 77.5 7500 9900 1.5
7216AC 80 140 26 85.3 71.5 5400 6700 1.5
7216B 80 140 26 77.1 65 4000 5400 1.5
7316B 80 170 39 127 100 3500 4700 3.85
7017C 85 130 22 60.1 58.7 7600 10000 0.97
7017AC 85 130 22 54.6 53.7 5500 6800 0.97
7217C 85 150 28 107 90.6 7000 9200 1.87
7217AC 85 150 28 98.6 83.6 5000 6300 1.87
7217B 85 150 28 89.2 76 3800 5000 1.87
7317B 85 180 41 137 112 3300 4400 4.53
7018C 90 140 24 71.7 69.1 7100 9400 1.26
7018AC 90 140 24 65.2 63.3 5100 6400 1.26
7218C 90 160 30 123 105 6500 8600 2.3
7218AC 90 160 30 113 96.7 4700 5900 2.3
7218B 90 160 30 102 88 3500 4700 2.3
7318B 90 190 43 148 124 3100 4200 5.3
7019C 95 145 24 73.4 73.4 6700 8900 1.32
7019AC 95 145 24 66.6 67.1 4800 6000 1.32
7219C 95 170 32 133 112 6100 8100 2.78
7219AC 95 170 32 122 103 4400 5500 2.78
7219B 95 170 32 111 94 3300 4400 2.78
7319B 95 200 45 158 137 3000 4000 6.12

 

7000 Series – Angular Contact Ball Bearing
Angular single row ball bearing have a 40° contact angle
Item No. Dimensions Basic Load Ratings (N) Speed (1/min) Mass
(mm) Dynamic Static (kg)
d D B Cr C0r Limiting Reference approx.
7004 20 42 12 13,400 7,500 18,000 0.061
7005 25 47 12 15,000 9,300 16,000 0.071
7006 30 55 13 18,300 12,500 14,000 0.109
7007 35 62 14 22,400 16,000 12,000 0.14
7008 40 68 15 26,000 18,600 10,000 0.17
 
7200 Series – Angular Contact Ball Bearing
Angular single row ball bearing have a 40° contact angle
Item No. Dimensions Basic Load Ratings (N) Speed (1/min) Mass
(mm) Dynamic Static (kg)
d D B Cr C0r Limiting Reference approx.
7200 10 30 9 5,000 2,600 32,000 26,000 0.033
7201 12 32 10 6,950 3,550 28,000 26,000 0.035
7202 15 35 11 8,000 4,450 24,000 22,000 0.044
7203 17 40 12 10,000 5,700 20,000 20,000 0.064
7204 20 47 14 13,400 7,800 18,000 18,000 0.103
7205 25 52 15 14,600 9,300 16,000 16,000 0.127
7206 30 62 16 20,400 14,100 13,000 13,000 0.197
7207 35 72 17 27,000 19,000 11,000 12,000 0.29
7208 40 80 17 32,000 23,500 9,500 10,000 0.367
7209 45 85 19 36,000 27,000 8,500 9,500 0.411
7210 50 90 20 37,500 28,500 8,000 9,000 0.456
7211 55 100 21 46,500 38,500 7,000 8,500 0.604
7212 60 110 22 56,000 45,000 6,300 7,500 0.777
7213 65 120 23 64,000 55,000 6,000 7,000 1.08
7214 70 125 24 69,500 62,000 5,600 6,700 1.17
7215 75 130 25 68,000 62,000 5,300 6,700 1.25
7216 80 140 26 80,000 72,000 5,000 6,000 1.53
7217 85 150 28 90,000 86,000 4,500 6,000 1.94
7218 90 160 30 106,000 98,000 4,300 5,600 2.38
7219 95 170 32 116,000 106,000 4,000 5,300 2.64
7220 100 180 34 137,000 132,000 3,800 5,000 3.45
7221 105 190 36 144,000 142,000 6,000 4,800 4.18
7222 110 200 38 155,000 154,000 3,600 4,500 4.7
7224 120 215 40 169,000 178,000 3,400 4,300 5.31
7226 130 230 40 186,000 204,000 3,200 3,800 6.12
7228 140 250 42 198,000 231,000 4,800 3,400 8.55
7230 150 270 45 227000 275000 4,500 3000 10.9
7232 160 290 48 236,000 280,000 4,300 2,800 13.5
7234 170 310 52 265,000 325,000 3,800 2,600 16.7
 
7300 Series – Angular Contact Ball Bearing
Angular single row ball bearing have a 40° contact angle
Item No. Dimensions Basic Load Ratings (N) Speed (1/min) Mass
(mm) Dynamic Static (kg)
d D B Cr C0r Limiting Reference approx.
7301 12 37 12 10.600 5.300 24.000 19.000 0,066
7302 15 42 13 13.200 7.200 20.000 17.000 0,081
7303 17 47 14 16.300 9.000 18.000 15.000 0,11
7304 20 52 15 19.000 11.100 17.000 13.000 0,143
7305 25 62 17 26.000 15.800 14.000 11.000 0,242
7306 30 72 19 33.000 2.210 11.000 10.000 0,341
7307 35 80 21 40.000 27.500 9.500 9.000 0,447
7308 40 90 23 50.000 34.500 8.500 8.500 0,646
7309 45 100 25 61.000 43.000 7.500 7.500 0,813
7310 50 110 27 70.000 50.000 7.000 7.000 1,13
7311 55 120 29 80.000 61.000 6.300 6.700 1,46
7312 60 130 31 90.000 69.000 5.600 6.300 1,74
7313 65 140 33 103.000 82.000 5.300 6.000 2,12
7314 70 150 35 117.000 93.000 5.000 5.600 2,58
7315 75 160 37 130.000 107.000 4.500 5.300 3,29
7316 80 170 39 144.000 124.000 4.300 4.800 3,66
7317 85 180 41 155.000 138.000 4.000 4.500 4,4
7318 90 190 43 167.000 155.000 3.800 4.300 5,14
7319 95 200 45 176.000 167.000 3.800 4.000 5,93
7320 100 215 47 199.000 197.000 3.600 3.600 7,16
7321 105 225 49 209.000 214.000 5.300 3.400 9,0
7322 110 240 50 232.000 245.000 3.400 3.200 9,97
7324 120 260 55 255.000 285.000 3.200 3.000 12,5
7326 130 280 58 285.000 325.000 3.000 2.600 15,1
7328 140 300 62 300.000 345.000 4.300 2.400 20,5
7330 150 320 65 325.000 390.000 3.800 2.200 24,8
7332 160 340 68 360.000 450.000 3.600 2.000 29,0
7334 170 360 72 405.000 530.000 3.200 1.900 34,4

 

 

 

Part No. d/mm D/mm B/mm Load Rating(KN) Limited  Speed(r/min) Load Rating(KN) Limited  Speed(r/min)
Cr/KN Cor/KN Grease  Oil  Cr/KN Cor/KN Grease  Oil 
72 serie       α=15°(C) α=25°(AC)
7200 10 30 9 6.5 3.8 56000 85000 6.3 3.7 53000 80000
7201 12 32 10 7.2 4.5 53000 80000 6.9 4.3 48000 70000
7202 15 35 11 9.1 5.8 48000 70000 8.8 5.6 43000 63000
7203 17 40 12 11.3 7.4 40000 60000 10.9 7.1 38000 56000
7204 20 47 14 13.1 9.6 34000 50000 12.6 9.2 30000 45000
7205 25 52 15 16.8 13.1 30000 45000 16.1 12.5 26000 40000
7206 30 62 16 23.4 18.8 24000 38000 22.3 18 20000 34000
7207 35 72 17 25.8 22.9 18000 30000 24.5 21.9 17000 28000
7208 40 80 18 34.1 30.9 17000 28000 32.5 29.5 15000 24000
7209 45 85 19 35.5 33.8 16000 26000 33.8 32.3 14000 22000
7210 50 90 20 43.3 40.6 15000 24000 41.3 38.7 14000 22000
7211 55 100 21 53.6 51.1 14000 22000 51.1 48.8 13000 20000
7212 60 110 22 55.8 56.2 12000 19000 53 53.5 11000 18000
7213 65 120 23 67.5 69 11000 18000 64.2 65.8 9500 16000
7214 70 125 24 70.2 74.6 10000 17000 66.6 71.1 9000 15000
7215 75 130 25 72.7 80.2 9500 16000 68.9 76.3 8500 14000
7216 80 140 26 86.5 96.5 9000 15000 82.1 91.9 8000 13000
7217 85 150 28 97.4 107.5 8500 14000 92.5 102.4 7500 12000
7218 90 160 30 121.9 131.3 8000 13000 115.8 124.6 7000 11000
7219 95 170 32 128.9 145.1 7500 12000 122.5 138.3 6700 10000
7220 100 180 34 146.2 165.9 7000 11000 138.9 158.2 6700 10000
7221 105 190 36 164.3 188.2 7000 11000 156.3 179.5 6300 9500
7222 110 200 38 170.4 202.5 6700 10000 161.8 193 6000 9000
7224 120 215 40 175.4 218.4 6000 9000 166.3 207.9 5300 8000
7226 130 230 40 200.4 258.3 5600 8500 190.4 246.2 5000 7500
7228 140 250 42 223.6 306.6 5000 7500 212.3 292.2 4500 6700
7230 150 270 45 240.9 341.5 4500 6700 228.7 325.5 4000 6000
7232 160 290 48 248.6 365.8 4300 6300 236.1 348.6 3800 5600
7234 170 310 52 300.2 459.2 3800 5600 285 437.6 3600 5300
7236 180 320 52 311.2 490.8 3800 5600 295.5 467.7 3400 5000
7238 190 340 55 321.3 524.8 3400 5000 305.1 500.1 3200 4800
7240 200 360 58 330.9 558.6 3200 4800 314.2 532.3 3000 4500

 

Angular Contact Ball Bearing
                      X1=OD-0.5mm  
Single Row Double Row Four Points Contact Ball
70 series 72 series 73 series 52 series 53 series 32 series 33 series 40 series 49 series QJ series QJF series X1 series
ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM
7000 7200 7300 5200   3200   4032 4936 QJ203 QJF203 QJ1571X1 QJF1571X1
7001 7201 7301 5201   3201     4936X3 QJ303 QJF303    
7002 7202 7302 5202 5302 3202 3302   4938X3 QJ304 QJF304 QJ1571X1 QJF1571X1
7003 7203 7303 5203 5303 3203 3303 4040   QJ205 QJF205    
7004 7204 7304 5204 5304 3204 3304 4044 4944X3 QJ206 QJF206 QJ1571X1 QJF1571X1
7005 7205 7305 5205 5305 3205 3305 4048X1   QJ306 QJF306    
7006 7206 7306 5206 5306 3206 3306   4952X3 QJ207 QJF207 QJ1026X1 QJF1026X1
7007 7207 7307 5207 5307 3207 3307   4956X3 QJ307 QJF307    
7008 7208 7308 5208 5308 3208 3308   4960 QJ208 QJF208 QJ1571X1 QJF1571X1
7009 7209 7309 5209 5309 3209 3309   4960X3 QJ308 QJF308    
7571 7210 7310 5210 5310 3210 3310     QJ209 QJF209 QJ1030X1 QJF1030X1
7011 7211 7311 5211 5311 3211 3311     QJ309 QJF309    
7012 7212 7312 5212 5312 3212 3312     QJ210 QJF210 QJ1032X1 QJF1032X1
7013 7213 7313 5213 5313 3213 3313     QJ310 QJF310    
7014 7214 7314 5214 5314 3214 3314     QJ212 QJF212 QJ1034X1 QJF1034X1
7015 7215 7315 5215 5315 3215 3315     QJ214 QJF214    
7016 7216 7316 5216     3316     QJ216 QJF216 QJ1036X1 QJF1036X1
7018 7218 7318 5217   3220       QJ220 QJF220    
  7219 7319 5218     3322     QJ222 QJF222 QJ1038X1 QJF1038X1
7571 7220 7320 5219           QJ1571 QJF1571    
    7321 5220           QJ224 QJF224 QJ1040X1 QJF1040X1
7571 7222 7322             QJ1026 QJF1026    
7571 7224 7324             QJ226 QJF226    
7026 7226 7326             QJ1571 QJF1571    
7571 7228 7328             QJ228 QJF228    
7030 7230 7330             QJ1030 QJF1030    
7032 7232 7332             QJ230 QJF230    
7034 7234               QJ1032 QJF1032    
7036 7236 7336             QJ232 QJF232    
7038                 QJ1034 QJF1034    
7040 7240               QJ234 QJF234    
71952 7244               QJ1036 QJF1036    
71956 72948               QJ236 QJF236    
71957 7248               QJ1038 QJF1038    
7072                 QJ238 QJF238    
71976                 QJ1040 QJF1040    
                  QJ240 QJF240    
                  QJ1044 QJF1044    
                  QJ1048 QJF1048    
                  QJ1052 QJF1052    
                  QJ1056 QJF1056    
                  QJ1060 QJF1060    
                  QJ1064 QJF1064    
                  QJ1068 QJF1068    

SAMPLES
1. Samples quantity: 1-10 PCS are available.
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to pay samples charge and shipping cost.
3. It’s better to start your order with Trade Assurance to get full protection for your samples order.

CUSTOMIZED
The customized LOGO or drawing is acceptable for us.

MOQ
1. MOQ: 10 PCS standard bearings.
2. MOQ: 1000 PCS customized your brand bearings.

OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield.
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info.

Thank you very much for taking time to view our company’s website. If you are interested in this product, please feel free to contact us. We are always here.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Non-Aligning Bearing
Separated: Separated
Samples:
US$ 2/Set
1 Set(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to support axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction, speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China OEM NSK, NTN. Koyo, Angular Contact Ball Bearings, 7296c, 7296CTA, 7296ceta, 7296acm, B7296c,   bearing driverChina OEM NSK, NTN. Koyo, Angular Contact Ball Bearings, 7296c, 7296CTA, 7296ceta, 7296acm, B7296c,   bearing driver
editor by CX 2024-04-23

China best Ball Bearing for Steering Gear System C4tz3553A C4tz3552A C6tz3552A C6tz3553A drive shaft bearing

Product Description

We has more experience to make a design of steering bearing system.
especially in Auto parts line also in remote steering bearing.So we welcome customer to make a inquiry into us about further information
about steering wheel bearings.

The entire basic steering assembly is called a Triple Tree, Triple Clamp, Steering Head, Steering Head Yoke, or Steering Stem. Up until around 1985 most, but not all, loose ball bearings for their steering races. These bearings have upper and lower outer races that are a tight press fit in the frame and a lower inner race  that is press fitted to the steering stem. The upper inner race is a loose fit.

Most late model steering gearbox use either tapered roller bearings or caged ball bearings. Caged ball bearings and tapered roller bearings are lubed the same way and are much easier to handle. Even with the front wheel removed that front end felt like it weighed a thousand pounds! I slid everything together and “Ping” 1 lousy ball bearing popped out.
 

BEARING NO. d D B
ACS0304   40 11
ACS0304-2   35 10.5
ACS0404   41 12
ACS04 0571   43 12.5
ACS 0571 1   47 14.3
ACS0405D-2   52 15
ACS0405J-4 19.5 47 11
ACS0405J-2 19.5 47 13.5
ACS0506 25 62 18
ACS0506FX 25 62 19
BT18Z-1B1 18.72 38 10
BT19Z-1A 22 47 16
BT25-4 25 62 18.7
BT30-5A 30 72 21.2
C4TZ3552A 37.8 54 12
C4TZ3553A 37.8 59 12
C6TZ3552A   45.95 11
C6TZ3553A   49.15 11
CB01 19.5 58.85 17.9
E15 15 35 8
E20 20 47 12
L17 17 40 10
M307487   32 10.11
S9072   60 6
VBT15Z-2   35 11
VBT17Z-2   38 10.9
VBT17Z-3   40 11
VBT17Z-4   40 10.9
VBT20Z-1   44 12
VBT21Z-1   42 13.5
VTAA19Z-1   41 11.5
VTAA19Z-4   41 12
128602   48 13.5
128702   44 12
128802   38.1 11.1
128202K   35 10.5
15BCW02 15 35 11
15BSW02   35 10
15BSW06B 15 35.2 12
17VBSW02   42 13
18BSC01 18.5 40 10
20BSW01 20 52 15
20BSW04A 20 52 17
28BSC01 28.5 43 11
3401R-100   52 15
509043 26.5 57 15
569304 20 47 16
567404-3 20 52 16
567405-1 25 60 18
561305-1 25 60 18
569306 30 60 18
5666683 27.5 38.1 7.9
5666693 20 34.2 7.9
5666683/93 19 38.1 7.9
9168304 20 47 16

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Steering Bearing
Material: Chrome Steel
Tolerance: P0
Certification: ISO9001
Clearance: C0
ABS: Without ABS
Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

How does Lubrication Impact the Performance and Lifespan of Ball Bearings?

Lubrication plays a critical role in the performance and lifespan of ball bearings. Proper lubrication ensures smooth operation, reduces friction, minimizes wear, and prevents premature failure. Here’s how lubrication impacts ball bearings:

  • Friction Reduction:

Lubrication creates a thin film between the rolling elements (balls) and the raceways of the bearing. This film reduces friction by separating the surfaces and preventing direct metal-to-metal contact. Reduced friction results in lower energy consumption, heat generation, and wear.

  • Wear Prevention:

Lubricants create a protective barrier that prevents wear and damage to the bearing’s components. Without proper lubrication, the repeated rolling and sliding of the balls against the raceways would lead to accelerated wear, surface pitting, and eventual failure.

  • Heat Dissipation:

Lubricants help dissipate heat generated during operation. The rolling elements and raceways can generate heat due to friction. Adequate lubrication carries away this heat, preventing overheating and maintaining stable operating temperatures.

  • Corrosion Resistance:

Lubrication prevents moisture and contaminants from coming into direct contact with the bearing’s surfaces. This helps protect the bearing against corrosion, rust, and the formation of debris that can compromise its performance and longevity.

  • Noise Reduction:

Lubricated ball bearings operate quietly because the lubricant cushions and dampens vibrations caused by the rolling motion. This noise reduction is crucial in applications where noise levels need to be minimized.

  • Seal Protection:

Lubricants help maintain the effectiveness of seals or shields that protect the bearing from contaminants. They create a barrier that prevents particles from entering the bearing and causing damage.

  • Improved Efficiency:

Properly lubricated ball bearings operate with reduced friction, leading to improved overall efficiency. This is especially important in applications where energy efficiency is a priority.

  • Lifespan Extension:

Effective lubrication significantly extends the lifespan of ball bearings. Bearings that are properly lubricated experience less wear, reduced fatigue, and a lower likelihood of premature failure.

  • Selection of Lubricant:

Choosing the right lubricant is essential. Factors such as speed, temperature, load, and environmental conditions influence the choice of lubricant type and viscosity. Some common lubricant options include grease and oil-based lubricants.

  • Regular Maintenance:

Regular lubrication maintenance is crucial to ensure optimal bearing performance. Bearings should be inspected and relubricated according to manufacturer recommendations and based on the application’s operating conditions.

In summary, proper lubrication is essential for the optimal performance, longevity, and reliability of ball bearings. It reduces friction, prevents wear, dissipates heat, protects against corrosion, and contributes to smooth and efficient operation in various industrial and mechanical applications.

China best Ball Bearing for Steering Gear System C4tz3553A C4tz3552A C6tz3552A C6tz3553A   drive shaft bearingChina best Ball Bearing for Steering Gear System C4tz3553A C4tz3552A C6tz3552A C6tz3553A   drive shaft bearing
editor by CX 2024-04-23