Tag Archives: cylindrical roller bearing

China Professional CZPT CZPT FAG Ball Bearing Auto Wheel Hub Taper Roller Bearing Cylindrical Roller Bearing Needle Roller Bearing with Hot selling

Product Description

Product Description

AUTO bearing for ALL KINDS OF TRUCK,TRACTOR,TRAILER

PART NUMBER:
 

86CL6395F0 DZ911416
86CL6082FO 86CL6082FOC 86CL6089FOD 86NL6089FOA 92CL6093FO


 3303
  

 014255713 A 


  014255713
LRS0571  LRS00922 LRS819 LRS922 LRT0 0571  LRT668

 

Detailed Photos

 

We have factory to produce all kinds of BEARING for heavy duty truck,light truck,tractor..
We can also produce according to drawing or samples.

Packaging & Shipping

1. Packaging details: carton and wooden box packaging,woven bag,brown box, or
according to customer requirements.

2. Delivery Period: 7-30 working days after
receiving 30% deposit byTT

3. Port: HangZhou Port,China.

4. Transport: By sea, by
air,DHL,FEDEX,UPS,TNT,

 

FAQ

1.Q:About the payment term.
   A: We can accept TT,LC,PAYPAL,WESTERNUION,and so on

2.Q:About the Quality and price
A: We supply good quality products to all our customers,give the competitive price.

3.Q:About the warranty period
   A:At least half year, some parts are even longer.

4. Q:How to make order ?
    A:Customer can contact us online,or send email with detail inquiry list,then we can reply soon

5.Q:About the discount
A:If the quantity large,we will give resonalbe discount.And for long time cooperation customer,we can give credit support

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Free Change for Quality Problem
Type: Wheel Hub Bearing
Material: Chrome Steel
ABS: Without ABS
Brand: Drn
Quality: Good Quality
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

How do Temperature and Environmental Conditions Affect the Performance of Ball Bearings?

Temperature and environmental conditions have a significant impact on the performance and longevity of ball bearings. The operating environment can influence factors such as lubrication effectiveness, material properties, and overall bearing behavior. Here’s how temperature and environmental conditions affect ball bearing performance:

  • Lubrication:

Temperature variations can affect the viscosity and flow characteristics of lubricants. Extreme temperatures can cause lubricants to become too thin or too thick, leading to inadequate lubrication and increased friction. In high-temperature environments, lubricants can degrade, reducing their effectiveness.

  • Material Properties:

Temperature changes can alter the material properties of the bearing components. High temperatures can lead to thermal expansion, affecting bearing clearances and potentially causing interference between components. Extreme cold temperatures can make materials more brittle and prone to fracture.

  • Clearance Changes:

Temperature fluctuations can cause changes in the internal clearance of ball bearings. For instance, at high temperatures, materials expand, leading to increased clearance. This can affect bearing performance, load distribution, and overall stability.

  • Corrosion and Contamination:

Harsh environmental conditions, such as exposure to moisture, chemicals, or abrasive particles, can lead to corrosion and contamination of bearing components. Corrosion weakens the material, while contamination accelerates wear and reduces bearing life.

  • Thermal Stress:

Rapid temperature changes can result in thermal stress within the bearing components. Differential expansion and contraction between the inner and outer rings can lead to stress and distortion, affecting precision and bearing integrity.

  • Noise and Vibration:

Temperature-related changes in material properties and internal clearances can influence noise and vibration levels. Extreme temperatures can lead to increased noise generation and vibration, affecting the overall operation of machinery.

  • Lubricant Degradation:

Environmental factors like humidity, dust, and contaminants can lead to premature lubricant degradation. Oxidation, moisture absorption, and the presence of foreign particles can compromise the lubricant’s performance and contribute to increased friction and wear.

  • Seal Effectiveness:

Seals and shields that protect bearings from contaminants can be affected by temperature fluctuations. Extreme temperatures can lead to seal hardening, cracking, or deformation, compromising their effectiveness in preventing contamination.

  • Choosing Appropriate Bearings:

When selecting ball bearings for specific applications, engineers must consider the expected temperature and environmental conditions. High-temperature bearings, bearings with specialized coatings, and those with enhanced sealing mechanisms may be necessary to ensure reliable performance.

Overall, understanding the impact of temperature and environmental conditions on ball bearing performance is crucial for proper bearing selection, maintenance, and ensuring optimal operation in diverse industries and applications.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Professional CZPT CZPT FAG Ball Bearing Auto Wheel Hub Taper Roller Bearing Cylindrical Roller Bearing Needle Roller Bearing   with Hot sellingChina Professional CZPT CZPT FAG Ball Bearing Auto Wheel Hub Taper Roller Bearing Cylindrical Roller Bearing Needle Roller Bearing   with Hot selling
editor by CX 2024-04-15

China OEM Factory Direct Sales Spherical Roller Bearing Self-Aligning Ball Bearing Cylindrical Roller Bearing Tapered Roller Bearing Needle Roller Bearing 1209 1209tni with Hot selling

Product Description

Product Description

Detailed Photos

 

 

Certifications

Packaging & Shipping

Company Profile

ZheJiang CZPT Metal Co., Ltd. is located in HangZhou, ZheJiang Province,which is founded in 2571.

 Mainly engaged in the production and sales of auto parts. For the automobile after-sales maintenance market to provide a complete variety of high-quality parts products, the annual sales of 30 million US dollars, the products are exported to the United States, Europe, Russia, Southeast Asia, the Middle East and other dozens of countries and regions, enjoy a high reputation in the domestic and foreign markets.

It can provide professional solutions and is a trusted supplier in the automotive aftermarket. The company has passed the “three system” certification of quality, environment and occupational CZPT and safety. Scientific management system, first-class production testing equipment, exquisite technology to ensure product quality.

FAQ

Q1: How many the MOQ of your company?
A: Our company MOQ is 1pcs.

Q2: Could you accept OEM and customize?
A:YES, we can customize for you according to sample or drawing.

Q3: Could you supply sample for free?
A: Yes, we can supply sample for free, but need our customer afford freight.

Q4 : Does your factory have CE?
A: Yes, we have ISO 9001:2008, and SASO. If you want other CE, we can do for you.

Q5: Is it your company is factory or Trade Company?
A: We have our own factory; our type is factory + trade.

Q6:  What time the guarantee of your bearing quality guarantee period?
A: 6 months ,Customer need supply photos and send bearing back.

Q7: Could you tell me the payment term of your company can accept?
A: T/T, Western Union, PayPal, T/T, L/C.

Q8: Could you tell me the delivery time of your goods?
A: 7-15 days , mostly base on your order quantity.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lead Time: Lead Time 3-25days
Transport Package: Barreled, Bagged, Boxed, Palletized or as Customer
Specification: medium ball bearing
Trademark: Huazhong
Origin: China
Samples:
US$ 2.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Are there Specific Maintenance Practices to Ensure the Longevity of Ball Bearings?

Maintaining ball bearings is essential to ensure their longevity, reliable performance, and prevent premature failure. Proper maintenance practices can extend the lifespan of ball bearings and the equipment they are used in. Here are specific maintenance practices to consider:

  • Regular Lubrication:

Implement a regular lubrication schedule using the appropriate lubricant for the application. Lubrication reduces friction, prevents wear, and helps dissipate heat. Follow manufacturer guidelines for lubricant type, quantity, and frequency.

  • Clean Environment:

Keep the operating environment clean and free from contaminants. Dust, dirt, and debris can infiltrate bearings and cause damage. Use seals or shields to protect bearings from contaminants, especially in harsh environments.

  • Proper Installation:

Ensure correct installation of bearings using proper tools and techniques. Improper installation can lead to misalignment, uneven load distribution, and premature wear. Follow manufacturer recommendations for installation procedures.

  • Regular Inspections:

Perform routine visual inspections to check for signs of wear, damage, or contamination. Regular inspections can help identify issues early and prevent further damage. Pay attention to noise, vibration, and temperature changes.

  • Temperature Monitoring:

Monitor bearing temperatures during operation using infrared thermometers or sensors. Abnormal temperature increases can indicate inadequate lubrication, misalignment, or other problems.

  • Correct Handling:

Handle bearings with care to prevent damage during storage, transportation, and installation. Avoid dropping or subjecting them to impacts that can affect their internal components.

  • Bearing Removal and Replacement:

Follow proper procedures when removing and replacing bearings. Use appropriate tools and techniques to avoid damage to the bearing or the surrounding components.

  • Alignment Maintenance:

Maintain proper shaft and housing alignment to prevent excessive loads and wear on the bearing. Misalignment can lead to increased stress and premature failure.

  • Training and Education:

Provide training to operators and maintenance personnel on proper bearing maintenance and handling practices. Educated personnel are more likely to identify issues and perform maintenance correctly.

  • Documented Records:

Keep records of maintenance activities, inspections, lubrication schedules, and any issues encountered. This documentation helps track the bearing’s performance over time and informs future maintenance decisions.

By implementing these maintenance practices, you can ensure the longevity of ball bearings, minimize downtime, reduce operational costs, and maintain the reliability of the equipment they are a part of.

ball bearing

How do Temperature and Environmental Conditions Affect the Performance of Ball Bearings?

Temperature and environmental conditions have a significant impact on the performance and longevity of ball bearings. The operating environment can influence factors such as lubrication effectiveness, material properties, and overall bearing behavior. Here’s how temperature and environmental conditions affect ball bearing performance:

  • Lubrication:

Temperature variations can affect the viscosity and flow characteristics of lubricants. Extreme temperatures can cause lubricants to become too thin or too thick, leading to inadequate lubrication and increased friction. In high-temperature environments, lubricants can degrade, reducing their effectiveness.

  • Material Properties:

Temperature changes can alter the material properties of the bearing components. High temperatures can lead to thermal expansion, affecting bearing clearances and potentially causing interference between components. Extreme cold temperatures can make materials more brittle and prone to fracture.

  • Clearance Changes:

Temperature fluctuations can cause changes in the internal clearance of ball bearings. For instance, at high temperatures, materials expand, leading to increased clearance. This can affect bearing performance, load distribution, and overall stability.

  • Corrosion and Contamination:

Harsh environmental conditions, such as exposure to moisture, chemicals, or abrasive particles, can lead to corrosion and contamination of bearing components. Corrosion weakens the material, while contamination accelerates wear and reduces bearing life.

  • Thermal Stress:

Rapid temperature changes can result in thermal stress within the bearing components. Differential expansion and contraction between the inner and outer rings can lead to stress and distortion, affecting precision and bearing integrity.

  • Noise and Vibration:

Temperature-related changes in material properties and internal clearances can influence noise and vibration levels. Extreme temperatures can lead to increased noise generation and vibration, affecting the overall operation of machinery.

  • Lubricant Degradation:

Environmental factors like humidity, dust, and contaminants can lead to premature lubricant degradation. Oxidation, moisture absorption, and the presence of foreign particles can compromise the lubricant’s performance and contribute to increased friction and wear.

  • Seal Effectiveness:

Seals and shields that protect bearings from contaminants can be affected by temperature fluctuations. Extreme temperatures can lead to seal hardening, cracking, or deformation, compromising their effectiveness in preventing contamination.

  • Choosing Appropriate Bearings:

When selecting ball bearings for specific applications, engineers must consider the expected temperature and environmental conditions. High-temperature bearings, bearings with specialized coatings, and those with enhanced sealing mechanisms may be necessary to ensure reliable performance.

Overall, understanding the impact of temperature and environmental conditions on ball bearing performance is crucial for proper bearing selection, maintenance, and ensuring optimal operation in diverse industries and applications.

ball bearing

How do Ball Bearings Differ from Other Types of Bearings like Roller Bearings?

Ball bearings and roller bearings are two common types of rolling-element bearings, each with distinct designs and characteristics. Here’s a comparison of ball bearings and roller bearings:

  • Design:

Ball Bearings: Ball bearings use spherical balls to separate and reduce friction between the bearing’s inner and outer rings. The balls enable rolling motion and smooth contact, minimizing friction.

Roller Bearings: Roller bearings, as the name suggests, use cylindrical or tapered rollers instead of balls. These rollers have larger contact areas, distributing loads over a broader surface.

  • Friction and Efficiency:

Ball Bearings: Due to the point contact between the balls and the rings, ball bearings have lower friction and are more efficient at high speeds.

Roller Bearings: Roller bearings have a larger contact area, resulting in slightly higher friction compared to ball bearings. They are more suitable for heavy-load applications where efficiency is prioritized over high speeds.

  • Load Capacity:

Ball Bearings: Ball bearings excel at handling light to moderate loads in both radial and axial directions. They are commonly used in applications where smooth rotation and low friction are important.

Roller Bearings: Roller bearings have a higher load-carrying capacity than ball bearings. They can support heavier radial and axial loads and are preferred for applications with significant loads or impact forces.

  • Variability:

Ball Bearings: Ball bearings come in various designs, including deep groove, angular contact, and thrust ball bearings, each suitable for different applications.

Roller Bearings: Roller bearings have diverse types, including cylindrical, spherical, tapered, and needle roller bearings, each optimized for specific load and motion requirements.

  • Speed Capability:

Ball Bearings: The reduced friction in ball bearings makes them suitable for high-speed applications, such as electric motors and precision machinery.

Roller Bearings: Roller bearings can handle higher loads but are generally better suited for moderate to low speeds due to slightly higher friction.

  • Applications:

Ball Bearings: Ball bearings are used in applications where smooth motion, low friction, and moderate loads are essential, such as electric fans, bicycles, and some automotive components.

Roller Bearings: Roller bearings find applications in heavy machinery, construction equipment, automotive transmissions, and conveyor systems, where heavier loads and durability are crucial.

In summary, ball bearings and roller bearings differ in their design, friction characteristics, load capacities, speed capabilities, and applications. The choice between them depends on the specific requirements of the machinery and the type of loads and forces involved.

China OEM Factory Direct Sales Spherical Roller Bearing Self-Aligning Ball Bearing Cylindrical Roller Bearing Tapered Roller Bearing Needle Roller Bearing 1209 1209tni   with Hot sellingChina OEM Factory Direct Sales Spherical Roller Bearing Self-Aligning Ball Bearing Cylindrical Roller Bearing Tapered Roller Bearing Needle Roller Bearing 1209 1209tni   with Hot selling
editor by CX 2024-04-08

China high quality Self-Aligning Ball Bearing Cylindrical Roller Bearing manufacturer

Product Description

Product Description

Bearing Number Dia(mm) Weight Cr Cor Structure mmp
New Model Old Model DxdxT (Kg) (KN) (KN)
24000 series
24018 457118 90x140x50 2.76     MB/CA/CC/EK/CK/CMW33  
24019 457119         MB/CA/CC/EK/CK/CMW33  
24571 457120 100x150x50 2.95 290 620 MB/CA/CC/EK/CK/CMW33 1800
24571 457122 110x170x60 4.98 310 650 MB/CA/CC/EK/CK/CMW33 1700
24571 457124 120x180x60 5.4 325 660 MB/CA/CC/EK/CK/CMW33 1600
24026 457126 130x200x69 7.95 477 815 MB/CA/CC/EK/CK/CMW33 1500
24571 457128 140x210x69 8.45 495 900 MB/CA/CC/EK/CK/CMW33 1400
24030 457130 150x225x75 10.5 500 1050 MB/CA/CC/EK/CK/CMW33 1300
24032 457132 160x240x80 13 570 1210 MB/CA/CC/EK/CK/CMW33 1100
24034 457134 170x260x90 16.7 705 1500 MB/CA/CC/EK/CK/CMW33 1000
24036 457136 180x280x100 22.5 835 1750 MB/CA/CC/EK/CK/CMW33 950
24038 457138 190x290x100 24 855 1840 MB/CA/CC/EK/CK/CMW33 950
24040 457140 200x310x109 30.5 985 2130 MB/CA/CC/EK/CK/CMW33 900
24044 457144 220x340x118 34 1150 2500 MB/CA/CC/EK/CK/CMW33 850
24048 457148 240x360x118 42.5 1240 2800 MB/CA/CC/EK/CK/CMW33 800

 

Detailed Photos

Certifications

Packaging & Shipping

Company Profile

 ZheJiang CZPT Metal Co., Ltd. is located in HangZhou, ZheJiang Province,which is founded in 2571.

 Mainly engaged in the production and sales of auto parts. For the automobile after-sales maintenance market to provide a complete variety of high-quality parts products, the annual sales of 30 million US dollars, the products are exported to the United States, Europe, Russia, Southeast Asia, the Middle East and other dozens of countries and regions, enjoy a high reputation in the domestic and foreign markets.

It can provide professional solutions and is a trusted supplier in the automotive aftermarket. The company has passed the “three system” certification of quality, environment and occupational CZPT and safety. Scientific management system, first-class production testing equipment, exquisite technology to ensure product quality.

FAQ

Q1: How many the MOQ of your company?
A: Our company MOQ is 1pcs.

Q2: Could you accept OEM and customize?
A:YES, we can customize for you according to sample or drawing.

Q3: Could you supply sample for free?
A: Yes, we can supply sample for free, but need our customer afford freight.

Q4 : Does your factory have CE?
A: Yes, we have ISO 9001:2008, and SASO. If you want other CE, we can do for you.

Q5: Is it your company is factory or Trade Company?
A: We have our own factory; our type is factory + trade.

Q6:  What time the guarantee of your bearing quality guarantee period?
A: 6 months ,Customer need supply photos and send bearing back.

Q7: Could you tell me the payment term of your company can accept?
A: T/T, Western Union, PayPal, T/T, L/C.

Q8: Could you tell me the delivery time of your goods?
A: 7-15 days , mostly base on your order quantity.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Model No.: 24018 24020 24024 24028 24030 24032 24036 24038
Hardness: HRC62-65
Cage Type: Cc Ca MB
Transport Package: Single Box+Outer Carton+Pallets
Specification: Small and Medium-Sized (60-115mm)
Trademark: Huazhong
Samples:
US$ 0.9/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China high quality Self-Aligning Ball Bearing Cylindrical Roller Bearing   manufacturerChina high quality Self-Aligning Ball Bearing Cylindrical Roller Bearing   manufacturer
editor by CX 2024-04-04

China high quality China Manufacturer Radial Thrust Self-Aligning Deep Groove Angular Contact Insert Ball Bearings Units Cylindrical Tapered Spherical Needle Roller Bearings drive shaft bearing

Product Description

PRODUCT PICTURES


RELATED PRODUCTS

OUR SERVICES

We can provide manufacturing capabilities and services of regular bearings for you, or customized non-standard bearings as you required.

 BEARING:
  — Dimensions
  — Material
  — Tolerance standard

APPEARANCE:
  — Logo (Laser Marking)
  — Package Design

40+ YEARS EXPERIENCE 
CONTINUOUS AND STABLE DELIVERY OF PRODUCTS.

With over 40 years experience of the bearing manufacturing, we know how to make good bearings with less cost consistently and efficiently.

We use advanced CNC turning, grinding, and superfinishing machines to ensure high, stable, and accurate machining.  All of your goods, from the most economical category, to the highest rated category, will always be manufactured precisely to the standards you require.

OWN HEAT TREATMENT 
CONTROALLABLE COST AND QUALITY.

Heat treatment is 1 of the crucial processes to ensure high performance of bearing materials. Compared with other manufacturers, we can produce higher quality bearings at smaller cost, with a more flexible and controllable production schedule, and in a shorter time

We have 6 heat treatment production lines.

Bearings are heated uniformly, with small deformation and little/no oxidized decarburization, which can make them have high hardness, high fatigue resistance, good wear resistance, dimensional stability, and excellent mechanical strength.
 

OUTSTXIHU (WEST LAKE) DIS.  QUALITY
LOW NOISE, LOW FRICTION AND LONG LIFE.

All our products are characterized by low noise, low friction and long life.  This is due to our attention to the roundness, waviness and surface roughness of bearing raceway.

Our products fully meets the requirements of national and international standards according to the testing result of roughness, roundness, hardness, vibration noise, vibration velocity.

PACKING
PACKAGING THAT HELPS SELL.

1, Inner package
   Corrosion and Dust Proof PE plastic film  / bag packing + Tube packing, or Wrapping  tape for larger bearings.

2, Corrugated Individual Box
   Our attractive sales-helpful “3-JOYS” package, or as the design of your package.
3, Outer package
  Corrugated carton + Wooden pallet 

MODERN WELL-ORGANIZED WAREHOUSE

  · Constant temperature (20°C) and humidity (RH 52%) warehouse
  · Hundreds of models on hand, short delivery time.
 

HONOR & SYSTEM CERTIFICATES

EXHIBITION

SAMPLES POLICY 

 FREE SAMPLES AND SHIPPING

 We are happy to send you free samples of our bearings for field   testing. All transportation costs will be paid by us.

 Please note: Depending on the model and value of samples,   this policy may not apply!

 Please contact our sales staff for details.

TRANSPORTATION
FASTEST DELIVERY TO CUSTOMERS

CUSTOMERS FEEDBACK

PAYMENT TERMS 
To facilitate your payment, we offer a variety of options! 

    
 

FAQ

1, About the lead time.
 
This depends on several factors, like Is the production schedule tight? Is there a corresponding model in stock, and is there enough of this model in stock? How many pcs of that model would be ordered?
Simply speaking, based on a 20′ GP container load:

If the model your Preferred is Sufficient stock Lead Time
Regular models YES Within 7 days
Regular models NO Within 30 days
Non-regular model NO About 50 days

For accurate estimate, please contact with our sale stuff. Thanks.

2, Minimum order quantity. 
  

Even just ONE piece of bearing is ok for us.

  
3, If you don’t know which model is the right choice…
  

We would like to give you some advise if you like, according to the real situation and demand of your local market. Our purpose is to help you to get proper and right models for your customers, so that you would make a better sales and income finally.

4, Factory Inspection

We surely would welcome you or your representatives to come to our plants or working offices to take a good look and chat with our hardworking CZPT employees. Ask our sales stuff and she/he will arrange that for you.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Non-Aligning Bearing
Separated: Unseperated/Seperated
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

How do Ceramic Ball Bearings Compare to Traditional Steel Ball Bearings in Terms of Performance?

Ceramic ball bearings and traditional steel ball bearings have distinct characteristics that can impact their performance in various applications. Here’s a comparison of how these two types of bearings differ in terms of performance:

  • Material Composition:

Ceramic Ball Bearings:

Ceramic ball bearings use ceramic rolling elements, typically made from materials like silicon nitride (Si3N4) or zirconium dioxide (ZrO2). These ceramics are known for their high hardness, low density, and resistance to corrosion and wear.

Traditional Steel Ball Bearings:

Traditional steel ball bearings use steel rolling elements. The type of steel used can vary, but common materials include chrome steel (52100) and stainless steel (440C). Steel bearings are known for their durability and strength.

  • Friction and Heat:

Ceramic Ball Bearings:

Ceramic bearings have lower friction coefficients compared to steel bearings. This results in reduced heat generation during operation, contributing to higher efficiency and potential energy savings.

Traditional Steel Ball Bearings:

Steel bearings can generate more heat due to higher friction coefficients. This can lead to increased energy consumption in applications where efficiency is crucial.

  • Weight:

Ceramic Ball Bearings:

Ceramic bearings are lighter than steel bearings due to the lower density of ceramics. This weight reduction can be advantageous in applications where minimizing weight is important.

Traditional Steel Ball Bearings:

Steel bearings are heavier than ceramic bearings due to the higher density of steel. This weight may not be as critical in all applications but could impact overall equipment weight and portability.

  • Corrosion Resistance:

Ceramic Ball Bearings:

Ceramic bearings have excellent corrosion resistance, making them suitable for applications in corrosive environments, such as marine or chemical industries.

Traditional Steel Ball Bearings:

Steel bearings are susceptible to corrosion, especially in harsh environments. Stainless steel variants offer improved corrosion resistance but may still corrode over time.

  • Speed and Precision:

Ceramic Ball Bearings:

Ceramic bearings can operate at higher speeds due to their lower friction and ability to withstand higher temperatures. They are also known for their high precision and low levels of thermal expansion.

Traditional Steel Ball Bearings:

Steel bearings can operate at high speeds as well, but their heat generation may limit performance in certain applications. Precision steel bearings are also available but may have slightly different characteristics compared to ceramics.

  • Cost:

Ceramic Ball Bearings:

Ceramic bearings are generally more expensive to manufacture than steel bearings due to the cost of ceramic materials and the challenges in producing precision ceramic components.

Traditional Steel Ball Bearings:

Steel bearings are often more cost-effective to manufacture, making them a more economical choice for many applications.

In conclusion, ceramic ball bearings and traditional steel ball bearings offer different performance characteristics. Ceramic bearings excel in terms of low friction, heat generation, corrosion resistance, and weight reduction. Steel bearings are durable, cost-effective, and widely used in various applications. The choice between the two depends on the specific requirements of the application, such as speed, precision, corrosion resistance, and budget considerations.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China high quality China Manufacturer Radial Thrust Self-Aligning Deep Groove Angular Contact Insert Ball Bearings Units Cylindrical Tapered Spherical Needle Roller Bearings   drive shaft bearingChina high quality China Manufacturer Radial Thrust Self-Aligning Deep Groove Angular Contact Insert Ball Bearings Units Cylindrical Tapered Spherical Needle Roller Bearings   drive shaft bearing
editor by CX 2024-04-03

China factory Ball Bearing, Auto Wheel Hub Bearing, Taper Roller Bearing, Cylindrical Roller Bearing drive shaft bearing

Product Description

High effiency anti-abbrasive slurry pump spare parts
Brief introductions
HangZhou CZPT Industrial Pump Co., Ltd. is the specialized manufactuer of slurry pumps in HangZhou, China. Our products cover Slurry pump, Sand/Gravel pump, vertical slurry pump, froth pump and slurry pump spare parts.

Description of products
1. The slurry pump spare parts are made of high chromium alloy which has superior wear and corrosive resistance.
2. Non-Standard slurry pump spare parts & Different size available.

Main applications of slurry pump spare parts
This kind of slurry pump spare parts are mainly used in for handling abrasive, high density slurries in the metallurgical, mining, coal, power, building material and other industrial departments.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Impeller Number: Single-Stage Pump
Working Pressure: High Pressure Pump
Influent Type of Impeller: Single Suction Pump
Position of Pump Shaft: Horizontal Pump
Pump Casing Combined: Horizontal Split Pumps
Mounting Height: Suction Centrifugal
Customization:
Available

|

Customized Request

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

How does Lubrication Impact the Performance and Lifespan of Ball Bearings?

Lubrication plays a critical role in the performance and lifespan of ball bearings. Proper lubrication ensures smooth operation, reduces friction, minimizes wear, and prevents premature failure. Here’s how lubrication impacts ball bearings:

  • Friction Reduction:

Lubrication creates a thin film between the rolling elements (balls) and the raceways of the bearing. This film reduces friction by separating the surfaces and preventing direct metal-to-metal contact. Reduced friction results in lower energy consumption, heat generation, and wear.

  • Wear Prevention:

Lubricants create a protective barrier that prevents wear and damage to the bearing’s components. Without proper lubrication, the repeated rolling and sliding of the balls against the raceways would lead to accelerated wear, surface pitting, and eventual failure.

  • Heat Dissipation:

Lubricants help dissipate heat generated during operation. The rolling elements and raceways can generate heat due to friction. Adequate lubrication carries away this heat, preventing overheating and maintaining stable operating temperatures.

  • Corrosion Resistance:

Lubrication prevents moisture and contaminants from coming into direct contact with the bearing’s surfaces. This helps protect the bearing against corrosion, rust, and the formation of debris that can compromise its performance and longevity.

  • Noise Reduction:

Lubricated ball bearings operate quietly because the lubricant cushions and dampens vibrations caused by the rolling motion. This noise reduction is crucial in applications where noise levels need to be minimized.

  • Seal Protection:

Lubricants help maintain the effectiveness of seals or shields that protect the bearing from contaminants. They create a barrier that prevents particles from entering the bearing and causing damage.

  • Improved Efficiency:

Properly lubricated ball bearings operate with reduced friction, leading to improved overall efficiency. This is especially important in applications where energy efficiency is a priority.

  • Lifespan Extension:

Effective lubrication significantly extends the lifespan of ball bearings. Bearings that are properly lubricated experience less wear, reduced fatigue, and a lower likelihood of premature failure.

  • Selection of Lubricant:

Choosing the right lubricant is essential. Factors such as speed, temperature, load, and environmental conditions influence the choice of lubricant type and viscosity. Some common lubricant options include grease and oil-based lubricants.

  • Regular Maintenance:

Regular lubrication maintenance is crucial to ensure optimal bearing performance. Bearings should be inspected and relubricated according to manufacturer recommendations and based on the application’s operating conditions.

In summary, proper lubrication is essential for the optimal performance, longevity, and reliability of ball bearings. It reduces friction, prevents wear, dissipates heat, protects against corrosion, and contributes to smooth and efficient operation in various industrial and mechanical applications.

China factory Ball Bearing, Auto Wheel Hub Bearing, Taper Roller Bearing, Cylindrical Roller Bearing   drive shaft bearingChina factory Ball Bearing, Auto Wheel Hub Bearing, Taper Roller Bearing, Cylindrical Roller Bearing   drive shaft bearing
editor by CX 2024-03-06

China supplier Cylindrical Roller Bearings Nj Type Nj202 Nj202e drive shaft bearing

Product Description

Cylindrical roller bearings High speed  low noise N NU NJ NUP 

Product Description

 

The cylindrical roller and raceway are linear contact bearings. Large load capacity, mainly bearing radial loads. The friction between the rolling element and the collar edge is small, suitable for high-speed rotation. According to the presence or absence of CZPT on the ring, it can be divided into single row cylindrical roller bearings such as NU, NJ, NUP, N, NF, and double row cylindrical roller bearings such as NNU and NN. The bearing is a separable structure with inner and outer rings.
Cylindrical roller bearings without retaining edges on the inner or outer rings can move relative to the axial direction, so they can be used as free end bearings. A cylindrical roller bearing with double CZPT on 1 side of the inner and outer rings, and a single rib on the other side of the ring, which can withstand a certain degree of axial load in 1 direction. Generally, steel plate stamped cages or copper alloy solid cages are used. But some also use polyamide shaped cages
.

 

Detailed Photos

Product Parameters

Type Roller
Structure cylindrical
clearance C2, C0, C3, C4, C5
Number of Row Double row
attribute Powerful factory
Material High quality bearing steel
Precision Rating P0 P6 P5 P4 p2
Seals Type open

Specifition

 

N type:
The inner ring has 2 integral flanges and the outer ring is without flanges. Axial displacement of the shaft with respect to the housing can be accommodated in both directions within the bearing itself. The bearings are therefore used as non-locating bearings.
NU type:
The outer ring of bearings of the NU design has 2 integral flanges and the inner ring is without flanges. Axial displacement of the shaft with respect to the housing can be accommodated in both directions within the bearing itself.
NJ type:
The outer ring has 2 integral flanges and the inner ring 1 integral flange. The bearings are therefore suitable for the axial location of a shaft in 1 direction.
NF type:
The outer ring has 1 integral flange and the inner ring 2 integral flanges.
NUP type:
The outer ring has 2 integral flanges and the inner ring 1 integral flange and 1 non-integral flange in the form of a loose flange ring. The bearings can be used as locating bearings, i.e. they can provide axial location for a shaft in both directions.
RN type:
No outer ring and the inner ring 2 integral flanges.
NN type:
NN type bearing without CZPT on outer ring,there is a wall in the midel of between both sides of inner ring. It can make shaft
relative bearing between the axial displacement generated in both directions.

Company Profile

ZheJiang Wangtai Bearing Co., Ltd. was founded in 2000 in ZheJiang , with its own production plant and sales as one. Independent marketing AOVE and WNTN brand high-quality bearings and related products. The company is committed to becoming the benchmark of Chinese bearing enterprises, with advanced and applicable technology, stable and reliable products, professional and thoughtful service, to provide users with more cost-effective solutions. The company mainly sells CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings and CZPT bearings. Products are widely used in: aviation, aerospace, metallurgy, iron and steel, mining, electric power, machinery manufacturing, printing, electronics, textile, food, chemical industry, automobile and many other fields. 
Enterprise spirit: integrity, gratitude, equality, mutual respect!

Packaging & Shipping

 

FAQ

Q: Why did you choose us?

A. We provide the best quality bearings with reasonable price, low friction, low noise and long service life.

B. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.

C. The best service provided by a well-trained international sales team.

Q: Do you accept small orders?

Surely, once your bearings are standard size bearings, even one, we will also accept.

Q: How long is your delivery time?

Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.

Q: Do you provide samples? Is it free or extra?

Yes, we can provide a small amount of free samples. Do you mind paying the freight?

Q: What should I do if I don’t see the type of bearings I need?

We have too many bearing series numbers. Sometimes we can’t put them all on web. Just send us the inquiry and we will be very happy to send you the bearing details.

Welcome to contact me anytime!

 

Rolling Body: Roller Bearings
The Number of Rows: Double
Outer Dimension: Small and Medium-Sized (60-115mm)
Material: Stainless Steel
Spherical: Aligning Bearings
Load Direction: Axial Bearing

bearing

Advantages of Ball Bearings

What is a ball bearing? A ball bearing is a type of rolling-element bearing that utilizes balls to maintain separation between two bearing races. Its contact angle between the balls and the races helps it reduce friction between the loads. There are several advantages to ball bearings, including their ability to withstand water. Read on to learn more. Here are a few of the benefits. You can use them in your daily life, from your car to your boat.

Ball bearings reduce friction between loads

Ball bearings reduce friction between loads by constraining the relative motion between moving parts. These bearings consist of a ring of small metal balls that reduce friction between moving objects. The name “ball bearing” is derived from the verb “to bear.” The lubricant within the bearing reduces friction between moving particles. In a machine, ball bearings reduce friction between moving parts and improve linear motion around a fixed axis.
These bearings are commonly used to reduce friction between loads in rotating machines. They have two tracks, one fixed to the rotating part and one stationary. The rolling balls of a ball bearing have lower friction than flat surfaces. Because of this, they are useful for bar stool bearings. They reduce friction between surfaces and maintain the separation between bearing races. Hence, minimal surface contact is possible. Ball bearings have the potential to increase the life of machines and reduce energy consumption.
Ball bearings can be as small as a wrist watch or as large as an industrial motor. They function the same way, reducing friction between loads. Among their many uses, ball bearings are essential for everyday operations. Clocks, air conditioners, fans, and automobile axles all use ball bearings. In fact, anything that uses a motor requires ball bearings. It’s no wonder they’re gaining popularity in industries and everyday life.

They support radial and axial loads

Radial ball bearings are used primarily for radial loads, but they also have a capacity for axial load. This load capacity is usually given as a percentage of the radial load rating. Axial load capacity is generally greater for a bearing with a larger difference between the inner and outer ring diameters. The axial load capacity is also affected by the bearing’s raceway depth, with shallow raceways being more suitable for heavier axial loads.
The two main types of axial and radial loads are defined by their orientation. Axial loads apply forces in one direction while radial loads act on the opposite direction. In both cases, the bearing must support the forces that are imposed. Axial loads apply forces to a bearing in a single direction, while radial loads apply forces in both directions. Regardless of the type of load, axial and radial loads should be considered when selecting a bearing for a given application.
Angular and radial ball bearings differ in their materials. Radial ball bearings are made largely of through-hardened materials. They typically have a Rockwell hardness rating of 58 Rc. The raceways and balls of these bearings are made of 440C stainless steel. They may also contain shields and seals. SAE 52100 steel is the most common material for the raceway, while molybdenum steels are excellent for high temperatures.

They have a contact angle between the balls and the races

When comparing axial load bearings with their radial counterparts, the angular contact angle is more important. Axial load bearings, have a contact angle between the balls and the races of 35 degrees. They are suitable for axial loads and a limited radial load. The contact angle of these bearings is a result of the shape of the inner and outer rings. Each rolling element comes into contact with the inner and outer rings only at one point, forming a 30 degree angle with the radial plane. The radial force of the axial load on these bearings is therefore increased by increasing the contact angle between the balls and the races.
This contact angle determines the amount of friction between the balls and the races, and allows angular contact bearings to withstand heavy radial and thrust loads. In addition, the larger the contact angle, the greater the axial load support. Angular contact bearings come in standard imperial (inch) and metric (mm) sizes. The angular contact angle is determined by the free radial play value and the curvature of the inner track.

They are water-resistant

In addition to their water-resistant qualities, corrosion-resistant ball bearings can also protect against the damaging effects of corrosive environments. Generally, standard metals, such as steel, are susceptible to rust, which can significantly reduce their performance and extend the life of parts. However, plastics, stainless steel, and ceramics can provide corrosion-resistant ball bearings. And because these materials are much more durable, they offer other advantages, such as being easy to maintain.
Among the advantages of plastic ball bearings is their high resistance to extreme temperatures, high speeds, and corrosion. Depending on their construction, plastic bearings are often able to resist corrosion and anti-static properties. They’re lightweight and inexpensive compared to steel ball bearings. CZPT Sales Corporation was established in 1987 with a modest turnover of four lacs. As of the last financial year, it has grown to 500 lacs in sales.
Other advantages of water-resistant ball bearings include corrosion resistance, which is a key consideration in many applications. While stainless steel is highly corrosion-resistant, it decreases the bearing’s load-carrying capacity. Also, corrosion-resistant deep groove ball bearings are usually made with a specified internal clearance, which absorbs loss in clearance during mounting and shaft expansion. This factor affects their performance, and if these are compromised, a replacement may be necessary.
bearing

They are tough

A few things make ball bearings tough: they’re made of real materials, which means that they have inherent imperfections. Grade-1 balls are made especially for high-stress applications, such as Formula One engines. Grade-3 balls, on the other hand, strike the perfect balance between performance and cost. Ceramic balls, for example, are made to spin at a high rate of 400 RPM, and they’re finished with a mirror finish.
A steel carbon ball bearing is one of the toughest forms of ball bearings available. The material is incredibly strong, but the contact between the balls isn’t the best. Low-carbon steel is best for linear shafting and is usually coated with a polymer to prevent damage. Steel ball bearings with moderate amounts of carbon are tough, durable, and water-resistant. They’re ideal for gears, but their high-carbon steel counterparts are particularly tough and can resist corrosion.
A ceramic ball bearing is another option. This type has steel inner and outer rings but ceramic balls. Ceramic balls can withstand higher temperatures than steel and are also electrically insulating. Ceramic ball bearings also tend to be lighter and are more resistant to wear and tear. They’re also ideal for applications in which grease is not an option, such as in space shuttles. Despite the fact that ceramic ball bearings are tough, they’re still cheaper than steel ball bearings.

They are conductive

You may have heard the term “ball bearing” if you’ve studied introductory physics. What does that mean? Essentially, ball bearings are conductive because of their ability to conduct electricity. This ability is reflected in the charge distribution on the surface of the ball. Positive charges are drawn toward the positive plate, while negative charges are drawn away from the positively charged ball bearing. You may have even seen a ball bearing in action.
However, despite their conductive nature, ball bearings can still become damaged by electrical discharge. A higher voltage can cause the balls to pit, and the raceways to become uneven. These uneven surfaces will first show up as excessive noise, and eventually cause the bearing to malfunction. Fortunately, engineers have found a way to counter this problem: conductive grease. This grease enables current to flow through the ball bearing, preventing both heat and voltage buildup.
The difference between steel and ceramic ball bearings is their density. Steel bearings are more conductive than glass or hybrid ceramics. Steel ball bearings have an even grain structure and are conductive for resonance flow. When moving fast, the air surrounding the steel ball bearing carries resonance from the inner ring to the outer. This makes them ideal for high-speed resonance transfer. In addition to being conductive, glass microbeads are harder and lighter than steel.
bearing

They are used in pulley systems

Pulley systems use ball bearings to move the sprocket, which is a wheel that rotates. These bearings are installed on the center mounting hole of the pulley wheel. They protect the entire system from heat, while allowing higher speed and smooth operation. They distribute the weight of the load evenly, minimizing friction and wobbling, and ensure a smooth rotation. Ball bearings are typically made from steel and are installed inside the pulley wheel.
The moment of inertia and bearing friction are measured to within ten percent accuracy. These two variables affect the speed of the pulley system, which can lead to crashes if the weight holders are not balanced. Therefore, ball bearings are used to minimize the chance of such crashes. When you want to know more about ball bearings in pulley systems, here are the advantages they provide.
Another benefit of ball bearings in pulley systems is that they have lower friction than their solid counterparts. In order to reduce friction, however, ball bearings must be made of good materials. Some of the common ball materials are high-quality plastics and stainless steel. Good materials and clever block design are essential to minimizing friction. If you are planning to use ball bearings in your pulley system, check out the following tips and make sure you are choosing the right one for your application.
China supplier Cylindrical Roller Bearings Nj Type Nj202 Nj202e   drive shaft bearingChina supplier Cylindrical Roller Bearings Nj Type Nj202 Nj202e   drive shaft bearing
editor by CX 2023-11-12

China manufacturer High Quality Cylindrical Bearing Angular Contact Ball Bearings Spherical Roller Spherical Plain Bearings for Farm Machinery Parts bearing engineering

Product Description

GEG230XS-2RS Ball Joint Bearing Radial Spherical Plain Bearing GEG 230 XS-2RS-L571    

       Application

Spherical Plain Bearings have an inner ring with a sphere convex outside surface and an outer ring with a correspondingly sphere,
but concave inside surface. Their design makes them particularly suitable for bearing arrangements where alignment movements 
between shaft and housing have to accommodate, or where oscillating or recurrent tilting movements must be permitted at relatively
slow sliding speeds.

GE Series Radial Spherical Plain Bearing

Product Name Spherical Plain Bearing
Precision Rating P6, P0, P5, P4, P2
Material Bearing Steel  (GCr15)
Clearance C0 C1 C2 C3 C4 C5
Vibration & Noisy Z1,Z2,Z3 V1,V2,V3
Sliding Contact Steel-on-Steel
Features High Precision, High Speed, Long Life, High Reliability, Low Noise , Reduce Friction
Certification ISO 9001:2008
Packing 1.Neutral Packing Bearing  2.Industrial Packing  3.Commercial Packing Bearing  4.Customize
Delivery Time 30 – 45 Days After The Order is Confirmed
Shippment 1.By Sea  2.By Air  3.By Express

 

Product Description

Bearing No. Dimensions(mm) Load ratings
KN

weight
≈ kg
d D B c dk rs r1s Dynamic Static
GE15ES-2RS 15 26 12 9 22 0.3 0.3 16 84 8 0.571
GE17ES-2RS 17 30 14 10 25 0.3 0.3 21 106 10 0.041
GE20ES-2RS 20 35 16 12 29 0.3 0.3 30 146 9 0.066
GE25ES-2RS 25 42 20 16 35.5 0.6 0.6 48 240 7 0.119
GE30ES-2RS 30 47 22 18 40.7 0.6 0.6 62 310 6 0.153
GE35ES-2RS 35 55 25 20 47 0.6 1 79 399 6 0.233
GE40ES-2RS 40 62 28 22 53 0.6 1 99 495 7 0.306
GE45ES-2RS 45 68 32 25 60 0.6 1 127 637 7 0.427
GE50ES-2RS 50 75 35 28 66 0.6 1 156 780 6 0.546
GE55ES-2RS 55 85 40 32 74 0.6 1 200 1000 7 0.939
GE60ES-2RS 60 90 44 36 80 1 1 245 1220 6 1.04
GE70ES-2RS 70 105 49 40 92 1 1 313 1560 6 1.55
GE80ES-2RS 80 120 55 45 105 1 1 400 2000 6 2.31
GE90ES-2RS 90 130 60 50 115 1 1 488 2440 5 2.75
GE100ES-2RS 100 150 70 55 130 1 1 607 3030 7 4.45
GE110ES-2RS 110 160 70 55 140 1 1 654 3270 6 4.82
GE120ES-2RS 120 180 85 70 160 1 1 950 4750 6 8.05
GE140ES-2RS 140 210 90 70 180 1 1 1070 5350 7 11.02
GE160ES-2RS 160 230 105 80 200 1 1 1360 6800 8 14.01
GE180ES-2RS 180 260 105 80 225 1.1 1.1 1530 7650 6 18.65
GE200ES-2RS 200 290 130 100 250 1.1 1.1 2120 10600 7 28.03
GE220ES-2RS 220 320 135 100 275 1.1 1.1 2320 11600 8 35.51
GE240ES-2RS 240 340 140 100 300 1.1 1.1 2550 12700 8 39.91
GE260ES-2RS 260 370 150 110 325 1.1 1.1 3030 15190 7 51.54
GE280ES-2RS 280 400 155 120 350 1.1 1.1 3570 17850 6 65.06
GE300ES-2RS 300 430 165 120 375 1.1 1.1 3800 19100 7 78.07

Detailed Photos

Classification

Strict Testing Produre

 

Company Profile

 

 

 

Packaging & Shipping

 

FAQ

Q: Are you trading company or manufacturer ?

 A: We are factory.We have our own brand:HQA .If you interested in our product,I can take you to visit our factory.

 Q: How long is your delivery time?
 A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is  according to quantity.

Q: Where is your factory located? How can I visit there?
 A: Our factory is located in ZheJiang Province,You can take the high-speed rail or plane to visit.

Q: Do you provide samples ? it is free charge?
 A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q:The MOQ is how much?
 A: About ordinary standard type of bearing ,We have rich inventory,not have MOQ,if your need a 
     product is Non-standard size,need customize,we will according the product size to determine the MOQ.

Contact Angle: 0
Aligning: Non-Aligning Bearing
Separated: Separated
Rows Number: Single
Material: Gcr15
Inner Ring/Finish: Inner Ring Gcr15/AISball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability ofball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

I 52100 Steel,Hardened and Pho

Samples:
US$ 0.01/Set
1 Set(Min.Order)

|
Request Sample

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China manufacturer High Quality Cylindrical Bearing Angular Contact Ball Bearings Spherical Roller Spherical Plain Bearings for Farm Machinery Parts   bearing engineeringChina manufacturer High Quality Cylindrical Bearing Angular Contact Ball Bearings Spherical Roller Spherical Plain Bearings for Farm Machinery Parts   bearing engineering
editor by CX 2023-08-23

China Standard Needle Bearing Cylindrical Roller Bearing Tapered Roller Bearing Track Roller Bearing Ball Bearing Spherical Plain Bearing Bushing IATF16949 Auto Bearing wholesaler

Product Description

Product Description

  Basic Features of Bearing
Types Needle Roller Bearing
Cylindrical Roller Bearing
Track Roller Bearing
Tapered Roller Bearing
Deep Groove Ball Bearing
Spherical Plain Bearing
Bushing and Accessory
Material Bearing Steel(GCr15, 100Cr6)
08/10
SPCC
Bronze
Nylon
Dimension Metric and Inch
Precision P0 P5 P6
Super finishing Yes
Single and double row Both single row and double row
Dimension Range 5mm~200mm(bore diameter)
MOQ 1 PC
Delivery Time 30-60 days
Sea Ports ZheJiang HangZhou HangZhou

Why Choose HECTO ?

1. More than 20 years of manufacturing and exporting experiences
2. an ISO/TS16949 company
3. 100% inspecting of products
4. More competitive prices with better quality
5. More than 99% of delivery in time
6. Rapid response of your emails and questions
7. Products can be traced back

 

 

 

 

Company Profile

 

 
 
 
 

 

Product Parameters

Needle Roller and Cage Assemblies

Shaft Bearing No. Boundary Dimensions(mm) Basic Load Rating(N) Limiting Speed
Fw Ew Bc Cr Cor Oil(RPM)
3 K3X5X7TN 3 5 7 1540 1290 50000
K3X5X9TN 3 5 9 1710 1480 48000
K3X6X7TN 3 6 7 1430 970 47000
4 K4X7X7TN 4 7 7 2330 1840 43000
K4X7X10TN 4 7 10 2350 1920 39000
5 K5X8X8TN 5 8 8 2300 1880 37000
K5X8X10TN 5 8 10 2800 2450 37000
6 K6X9X8TN 6 9 8 2500 2240 35000
K6X9X10TN 6 9 10 3300 3100 35000
K6X10X13TN 6 10 13 3500 2800 33000
7 K7X10X8TN 7 10 8 2750 2550 32000
K7X10X10TN 7 10 10 3350 3400 32000
8 K8X11X8TN 8 11 8 3000 2900 30000
K8X11X10TN 8 11 10 3830 3950 30000
K8X11X13TN 8 11 13 5000 5700 30000
K8X12X10TN 8 12 10 4900 4600 30000
9 K9X12X10TN 9 12 10 4200 4700 30000
K9X12X13TN 9 12 13 5500 6700 30000
10 K10X13X10TN 10 13 10 4500 5250 27000
K10X13X13TN 10 13 13 6000 7600 27000
K10X13X16TN 10 13 16 6300 7800 27000
K10X14X10TN 10 14 10 7000 7900 27000
K10X14X13TN 10 14 13 8000 9100 26000
K10X16X12TN 10 16 12 7000 9300 27000
12 K12X15X9TN 12 15 9 4120 5210 25000
K12X15X10TN 12 15 10 4320 5730 25000
K12X15X13TN 12 15 13 6000 8100 25000
K12X16X8TN 12 16 8 1200 4700 25000
K12X16X10TN 12 16 10 6000 6900 25000
K12X16X13TN 12 16 13 7900 9200 25000
K12X17X13TN 12 17 13 9300 10000 24000
K12X18X12TN 12 18 12 9800 8000 24000
K12X15X20TN 12 15 20 8200 12000 25000
14 K14X17X10 14 17 10 5100 6800 23000
K14X17X17 14 17 17 9300 14000 23000
K14X18X10 14 18 10 6800 8300 23000
K14X18X13 14 18 13 8100 9800 23000
K14X18X14 14 18 14 9200 12000 23000
K14X18X15 14 18 15 10000 13000 23000
K14X18X17 14 18 17 10500 13900 23000
K14X20X12 14 20 12 9900 10500 22000
15 K15X18X14 15 18 14 7500 11000 23000
K15X18X17 15 18 17 9600 15900 23000
K15X19X10 15 19 10 7200 9000 22000
K15X19X13 15 19 13 8300 9800 22000
K15X19X17 15 19 17 10300 15000 22000
K15X19X24 ZW 15 19 24 12800 25710 22000
K15X22X13 15 22 13 9700 11000 22000
K15X22X12 15 22 12 10000 13000 22000
K15X21X15 15 21 15 13800 16000 22000
K15X21X21 15 21 21 18000 24000 22000
16 K16X20X10 16 20 10 7600 9700 22000
K16X20X13 16 20 13 8700 11300 22000
K16X20X17 16 20 17 11200 16300 22000
K16X21X10 16 21 10 9000 12000 22000
K16X22X12 16 22 12 11000 12000 21000
K16X22X13 16 22 13 12000 13400 21000
K16X22X16 16 22 16 14300 17000 21000
K16X22X20 16 22 20 18000 22300 21000
K16X23X14 16 23 14 19000 21000 19000
K16X24X20 16 24 20 21100 23000 20000
17 K17X21X10 17 21 10 7900 15710 21000
K17X21X13 17 21 13 10000 14100 21000
K17X21X17 17 21 17 12000 17400 21000
K17X23X14 17 23 14 11000 15000 21000
18 K18X22X10 18 22 10 8200 9900 20000
K18X22X13 18 22 13 9000 12100 20000
K18X22X17 18 22 17 11900 17600 20000
K18X24X12 18 24 12 11200 12900 20000
K18X24X13 18 24 13 12900 14900 20000
K18X24X13.5 18 24 13.5 12900 14900 20000
K18X24X20 18 24 20 20000 26500 20000
K18X25X14 18 25 14 16500 18800 20000
K18X25X22 18 25 22 22900 28400 20000
K18X26X14 18 26 14 18000 20000 18000
K18X28X16 18 28 16 19000 18400 19000
19 K19X23X13 19 23 13 9300 13000 20000
K19X23X17 19 23 17 12000 18600 20000
20 K20X24X10 20 24 10 8700 12100 19000
K20X24X12 20 24 12 9600 13800 19000
K20X24X13 20 24 13 9600 13800 19000
K20X24X17 20 24 17 12400 20000 19000
K20X26X12 20 26 12 13100 15700 19000
K20X26X16 20 26 16 18000 25000 18500
K20X26X17 20 26 17 18700 25500 19000
K20X26X20 20 26 20 20600 28500 19000
K20X28X20 20 28 20 23400 28000 18000
K20X28X25 20 28 25 30000 28500 18000
K20X30X30 20 30 30 35000 41000 18000
21 K21X25X13 21 25 13 9600 14500 19000
K21X25X17 21 25 17 12800 21000 19000
22 K22X26X10 22 26 10 8700 12900 18000
K22X26X13 22 26 13 10000 15400 18000
K22X26X17 22 26 17 13100 22100 18000
K22X27X13 22 27 13 14000 23000 18000
K22X28X17 22 28 17 19000 26500 18000
K22X28X23 22 28 23 20000 27000 19000
K22X29X16 22 29 16 19500 25000 17000
K22X30X15TN 22 30 15 19600 22900 17000
K22X30X20 22 30 20 21000 23500 18900
K22X32X24 22 32 24 33500 39500 16000
23 K23X35X16TN 23 35 16 24000 23400 15000
24 K24X28X10 24 28 10 9400 14300 17000
K24X28X13 24 28 13 10500 17000 17000
K24X28X17 24 28 17 14000 24500 17000
K24X29X13 24 29 13 13100 19100 16000
K24X30X17 24 30 17 19000 27000 16000
K24X30X31 24 30 31 27000 43000 16000
25 K25X29X10 25 29 10 9700 14900 16000
K25X29X13 25 29 13 10800 17900 16000
K25X29X17 25 29 17 14500 25500 16000
K25X30X13 25 30 13 14100 21300 16000
K25X30X20 25 30 20 21100 28000 16000
K25X30X25 25 30 25 21700 40400 15000
K25X30X26 25 30 26 25710 26500 15000
K25X31X17 25 31 17 19000 28000 16000
K25X31X21 25 31 21 24100 37500 16000
K25X32X16 25 32 16 20500 27500 15000
K25X33X20 25 33 20 28000 37500 15000
K25X33X24 25 33 24 33900 46500 15000
K25X34X18 25 34 18 48000 67000 15000
K25X35X30 25 35 30 46500 61500 14000
K25X30X26 ZW 25 30 26 21000 35000 14000
26 K26X30X10 26 30 10 9500 15500 16000
K26X30X13 26 30 13 11100 18700 16000
K26X30X17 26 30 17 14700 27000 16000
K26X31X13 26 31 13 12400 18400 15000
K26X30X22 26 30 22 15200 28000 16000
27 K27X32X17 27 32 27 16000 34000 17000
28 K28X32X16.5 28 32 16.5 15000 32400 14000
K28X32X17 28 32 17 15000 32400 14000
K28X33X13 28 33 13 14800 23600 14000
K28X33X17 28 33 17 19100 33000 14000
K28X33X27 TN 28 33 27 22800 40500 14000
K28X34X17 28 34 17 21300 35000 14000
K28X35X16 28 35 16 21000 29000 14000
K28X35X18 28 35 18 23500 33500 14000
K28X35X20 28 35 20 24000 34000 14000
K28X35X27 28 35 27 34500 54500 14000
K28X36X16 28 36 16 34000 47000 11000
K28X40X18 28 40 18 33000 36500 12000
K28X40X25 28 40 25 45000 54500 12000
30 K30X33X10 30 33 10      
K30X34X13 30 34 13 11800 21200 13000
K30X35X13 30 35 13 15100 25000 13000
K30X35X17 30 35 17 19100 33500 13000
K30X35X26 30 35 26      
K30X35X27 30 35 27 30000 58500 13000
K30X37X16 30 37 16 22500 33000 13000
K30X38X25 30 38 25 16000 390000 13000
K30X39X21 30 39 21      
K30X40X18 30 40 18 31500 39500 12000
K30X40X27 30 40 27      
K30X40X30 30 40 30 48500 68500 13000
K30X35X26 30 35 26 23500 43500 12000
K30X42X44.1 30 42 44.1      
32 K32X37X13 32 37 13 15000 25000 12000
K32X37X17 32 37 17 19400 35000 12000
K32X37X27 32 37 27 29500 59500 12000
K32X37X28 TN 32 37 28 23100 43000 12000
K32X38X16 32 38 16 21000 34000 12000
K32X38X20 32 38 20 26000 44500 12000
K32X38X26 TN 32 38 26 27000 46500 12000
K32X39X16 32 39 16 23500 35000 12000
K32X39X18 32 39 18 26000 40500 12000
K32X40X20 32 40 20 37000 40500 12000
K32X40X36 32 40 36 53500 91500 12000
K32X46X32 32 46 32 65500 82500 11000
K32X40X42 TN 32 40 42 49500 83500 12000
35 K35X40X13 35 40 13 15800 27500 11000
K35X40X17 35 40 17 20300 38000 11000
K35X40X25 35 40 25 29000 59500 11000
K35X40X27 TN 35 40 27 24500 48000 11000
K35X40X27 35 40 27 27800 62100 11000
K35X40X30 35 40 30 25000 49500 11000
K35X42X16 35 42 16 23900 37000 11000
K35X42X18 35 42 18 27000 42500 11000
K35X42X30 35 42 30 38500 67500 11000
K35X43X18 35 43 18 28000 41500 11000
K35X45X20 35 45 20 36500 49500 10000
K35X45X30 35 45 30 52500 78500 10000
K35X45X49 35 45 49 81500 13400 10000
K35X40X30 ZW 35 40 30 31500 65500 11000
K35X42X20 ZW 35 42 20 29500 48500 11000
36 K36X41X30 36 41 30 23000 43000 11000
K36X42X16 36 42 16 24000 42000 11000
37 K37X42X17 37 42 17 21900 42500 10000
K37X42X27 37 42 27 31500 67500 10000
K37X45X26 37 45 26 43500 73500 10000
38 K38X43X17 38 43 17 20000 38000 10000
K38X43X27 38 43 27 31000 67500 10000
K38X46X20 38 46 20 35000 56500 10000
K38X46X32 38 46 32 54500 98500 10000
39 K39X44X24 39 44 24 28000 58500 10000
K39X44X26 ZW 39 44 26 27000 55500 10000
40 K40X44X13 40 44 13 13500 28000 10000
K40X45X13 40 45 13 17100 32000 10000
K40X45X17 40 45 17 20900 41000 10000
K40X45X21 40 45 21 24400 49500 10000
K40X45X27 40 45 27 32500 72500 10000
K40X46X17 40 46 17 24500 44500 9000
K40X47X18 40 47 18 29000 49500 9000
K40X47X20 40 47 20 32000 56500 9000
K40X48X20 40 48 20 35500 58500 9000
K40X45X30 ZW 40 45 30 26000 53500 9000
42 K42X47X13 42 47 13 17300 33000 9000
K42X47X17 42 47 17 21100 42500 9000
K42X47X25 TN 42 47 25 27000 57500 9000
K42X47X27 42 47 27 33000 74500 9000
K42X48X35 42 48 35 35000 76000 9000
K42X50X18 42 50 18 31000 49500 9000
K42X50X20 42 50 20 34500 56500 9000
K42X47X30 ZW 42 47 30 31000 75500 9000
43 K43X48X17 43 48 17 21000 42500 9000
K43X48X27 43 48 27 33000 74500 9000
K43X50X18 43 50 18 30500 53500 8000
45 K45X49X19 45 49 19 17500 40000 8000
K45X50X17 45 50 17 22000 45000 8000
K45X50X27 45 50 27 34000 79500 8000
K45X50X32 TN 45 50 32 38000 90500 8000
K45X52X18 45 52 18 31000 56500 8000
K45X52X21 TN 45 52 21 39500 57500 8000
K45X53X20 45 53 20 38500 66500 8000
K45X53X21 45 53 21 38000 66500 8000
K45X53X22 45 53 22 42000 66500 8000
K45X53X28 45 53 28 51500 97500 8000
K45X59X18 TN 45 59 18 43500 53500 7000
K45X59X32 45 59 32 72500 101500 7000
K45X59X36 45 59 36 75500 108500 7000
K45X51X36 ZW 45 51 36 44500 98500 7000
47 K47X52X17 47 52 17 22800 48500 8000
K47X52X27 47 52 27 34500 82500 8000
K47X53X25 47 53 25 38000 81500 8000
K47X55X28 47 55 28 52500 99500 7500
48 K48X54X19 48 54 19 30000 60500 7500
K48X54X25 48 54 25 31000 91000 7500
50 K50X55X13.5 50 55 13.5 17500 36000 7500
K50X55X17 50 55 17 21400 46500 7500
K50X55X20 50 55 20 26000 59500 7500
K50X55X30 50 55 30 38500 96500 7500
K50X57X18 50 57 18 33000 62500 7000
K50X58X20 50 58 20 35000 61500 7000
K50X58X25 50 58 25 43500 80500 7000
52 K52X57X12 52 57 12 17500 36000 7000
55 K55X60X20 55 60 20 28000 65500 6500
K55X60X27 55 60 27 37500 96500 6500
K55X60X30 55 60 30 40500 10300 6500
K55X61X20 55 61 20 41000 11000 6500
K55X62X18 55 62 18 35000 69500 6500
K55X63X15 55 63 15 245000 40500 6500
K55X63X20 55 63 20 39500 73500 6500
K55X63X25 55 63 25 49500 99500 6500
K55X63X32 55 63 32 61500 129500 6500
K55X60X40ZW 55 60 40 48000 132000 6500
56 K56X61X20 56 61 20 27000 64500 6500
58 K58X63X17 58 63 17 21500 63500 6000
K58X64X19 58 64 19 24500 77500 6000
K58X65X18 58 65 18 34500 69500 6000
K58X65X38ZW 58 65 38 48500 106500 6000
60 K60X65X20 60 65 20 29000 71500 6000
K60X65X30 60 65 30 42000 115500 6000
K60X68X20 60 68 20 43000 84500 5500
K60X68X23 60 68 23 49000 100500 5500
K60X68X25 60 68 25 52500 110500 5500
K60X68X27 60 68 27 59000 120500 6000
K60X75X42 60 75 42 11300 19200 5500
K60X66X33ZW 60 66 33 45500 111500 6000
K60X66X40ZW 60 66 40 57500 150500 5500
K60X68X30ZW 60 68 30 44000 87500 5500
K60X68X34ZW 60 68 34 47500 95500 5500
62 K62X70X40ZW 62 70 40 65500 145500 5500
63 K63X70X21 63 70 21 45000 100500 5500
64 K47X70X16 64 70 16 27500 59500 5500
65 K65X70X20 65 70 20 30000 76500 5500
K65X70X30 65 70 30 43500 93500 5500
K65X73X23 65 73 23 45500 93500 5000
K65X73X30 65 73 30 56500 122500 5000
68 K68X74X20 68 74 20 35000 83500 5000
K68X74X30 68 74 30 46000 117500 5000
K68X74X35 ZW 68 74 35 48000 124500 5000
K68X75X20 68 75 32 53500 127500 4500
70 K70X76X20 70 76 20 35500 85500 4500
K70X76X30 70 76 30 51500 138500 4500
K70X78X25 70 78 25 51500 111500 4500
K70X78X30 70 78 30 59500 134500 4500
K70X80X30 70 80 30 72500 147500 4500
K70X78X46 ZW 70 78 46 77500 18800 4500
72 K72X80X20 80 20 41000 84500 4500  
73 K73X79X20 73 79 20 36500 99500 4500
75 K75X81X20 75 81 20 37000 93500 4500
K75X81X30 75 81 30 51500 142000 4500
K75X83X23 75 83 23 49500 108000 4000
K75X83X30 75 83 30 91500 142000 4000
K75X83X35 ZW 75 83 35 62500 146500 4000
K75X83X40 ZW 75 83 40 72500 176500 4000
80 K80X86X20 80 86 20 38000 97500 4000
K80X86X30 80 86 30 55500 158500 4000
K80X88X30 80 88 30 71500 178500 4000
K80X88X40 ZW 80 88 40 75500 191500 4000
K80X88X46 ZW 80 88 46 87500 23000 4000
85 K85X92X20 85 92 20 44000 15710 3500
90 K90X97X20 90 97 20 44500 112500 3000
K90X98X27 90 98 27 60500 149500 3000
K90X98X30 90 98 30 67500 171500 3000
95 K95X102X20 95 102 20 45500 122500 2900
K95X103X30 ZW 95 103 30 68500 179500 2900
K95X103X40 ZW 95 103 40 82500 227500 2900
100 K100X107X21 100 107 21 47500 126500 2700
K100X108X27 100 108 27 56500 142500 2700
K100X108X30 100 108 30 70500 187500 2700
105 K105X112X21 105 112 21 47000 126500 2500
K105X113X30 105 113 30 71500 196500 2500
110 K110X117X24 110 117 24 55500 157500 2300
K110X118X30 110 118 30 77500 218500 2300
115 K115X123X27 115 123 27 63000 170000 4100
K115X125X35 115 125 35 63000 170000 4100
K115X125X40 115 125 40 65000 175000 4100

Cylindrical Roller Bearing

Shaft  Bearing No. Boundary Dimensions(mm) Basic Load Ratings(N) Limiting Speed 
d D B Cr Cor Oil(RPM)
17 N203 17 40 12 11400 9100 19000
NJ203 17 40 12 11400 9100 19000
NJ203ETN 17 40 12 16900 13800 19000
NU203 17 40 12 11400 9100 19000
NU203ETN 17 40 12 16900 13800 19000
NJ2203E 17 40 16 22800 20300 16400
20 N204 20 47 14 15800 13100 16400
NF204 20 47 14 15800 13100 16400
NJ204 20 47 14 17000 14400 16400
NU204 20 47 14 15800 13100 16400
N304 20 52 15 21800 17700 13800
NJ304 20 52 15 21800 17700 13800
NU304 20 52 15 21800 17700 13800
NUP304ETN 20 52 15 31500 26800 13100
NJ2304ETN 20 52 21 42000 38700 13000
25 N205 25 52 15 17000 14900 13800
NF205 25 52 15 17000 14900 13800
NJ205 25 52 15 17000 14900 13800
NJ205E 25 52 15 29900 28400 13100
NJ205ETN 25 52 15 29900 28400 13100
NU205 25 52 15 17000 14900 13800
NU205/C3 25 52 15 15400 14900 13800
NU205E 25 52 15 29900 28400 13100
NU205ETN 25 52 15 29900 28400 13100
NUP205 25 52 15 17000 14900 13800
NCL205 25 52 15 24600 24300 13100
N2205 25 52 18 24100 23300 13100
NJ2205 25 52 18 24100 23300 13100
NU2205 25 52 18 24100 23300 13100
NU2205/C3 25 52 18 21400 22800 13100
NU2205EV 25 52 18 41400 43300 11400
N305 25 62 17 29100 25200 11400
N305ENTN/C3 25 62 17 41500 37400 11400
NF305 25 62 17 29100 25200 11400
NJ305 25 62 17 29100 25200 11400
NJ305/C3 25 62 17 29100 25200 11400
NJ305E 25 62 17 41500 37400 11400
NJ305ETN 25 62 17 41500 37400 10500
NU305 25 62 17 29100 25200 11400
NUP305 25 62 17 29100 25200 11400
NUP305E 25 62 17 41500 37400 10500
NUP305N 25 62 17 29100 25200 11400
NCL305 25 62 17 39500 37800 10500
NU2305E 25 62 24 57000 56100 4500
NJ2305E 25 62 24 57000 56100 9200
NJ2305EV/C4 25 62 24 66300 69700 9200
NJ2305VH 25 62 24 63000 57000 4500
NUP2305E 25 62 24 57000 56100 9200
NCL2305 25 62 24 57700 61400 9200
30 N206 30 62 16 23900 22200 11300
N206E 30 62 16 36800 34400 10500
NJ206 30 62 16 23900 22200 11300
NJ206E 30 62 16 39100 37300 10500
NJ206ETN 30 62 16 39100 37300 10500
NU206 30 62 16 23900 22200 11300
NU206E 30 62 16 39100 37300 10500
NUP206E 30 62 16 39100 37300 10500
NUP206E/C4 30 62 16 39100 37300 10500
NCL206 30 62 16 33800 35100 10500
NJ2206ETN 30 62 20 48900 49800 10500
NJ2206E 30 62 20 48900 49800 10500
NJ2206E.TVP 30 62 20 48900 49800 5000
N306 30 72 19 35900 31900 9200
NJ306 30 72 19 35900 31900 9200
NJ306E 30 72 19 53200 55710 8500
NJ306E/C3 30 72 19 53200 55710 8500
NU306 30 72 19 35900 31900 9200
NU306E 30 72 19 53200 55710 9200
NU306MN/P63 30 72 19 35100 38600 9200
NUP306 30 72 19 35900 31900 9200
NFP306 30 72 19 35900 31900 9200
35 N207 35 72 17 31400 28900 9900
NF207 35 72 17 31400 28900 9900
NJ207 35 72 17 31400 28900 9900
NJ207E 35 72 17 55710 55710 9200
NU207 35 72 17 31400 28900 9900
NUP207 35 72 17 31400 28900 9900
NU2207E 35 72 23 61600 65200 4300
NJ2207E 35 72 23 61600 65200 7900
NUP2207E 35 72 23 61600 65200 7900
N307 35 80 21 46400 43000 9200
NF307 35 80 21 46400 43000 9200
NJ307 35 80 21 46400 43000 9200
NJ307/C3 35 80 21 46400 43000 3400
NJ307E 35 80 21 66500 65300 7900
NU307 35 80 21 46400 43000 9200
NU307EV1 35 80 21 71000 71000 7900
NUP307E 35 80 21 66500 65300 7900
NUP307EN 35 80 21 66500 65300 7900
NUP307EV 35 80 21 77500 79800 7900
NUP307EV/C3 35 80 21 77500 79800 7900
NJ2307E 35 80 31 93000 100500 7900
NU2307EV4 35 80 31 99000 109000 7900
40 N208 40 80 18 43700 42900 8700
NF208 40 80 18 43700 42900 8700
NJ208 40 80 18 43700 42900 8700
NU208 40 80 18 43700 42900 8700
NUP208 40 80 18 43700 42900 8700
NUP208/P6 40 80 18 43700 42900 8700
NU2208E 40 80 23 72300 77600 3800
NJ2208E 40 80 23 72300 77600 7900
NJ2208EV 40 80 23 84700 95100 7400
N308 40 90 23 58600 56900 7900
NF308 40 90 23 58600 56900 7900
NF308M/P6 40 90 23 58600 56900 7900
NJ308 40 90 23 58600 56900 7900
NJ308ETN 40 90 23 83200 81500 3000
NJ308/C3 40 90 23 58600 56900 3000
NU308 40 90 23 58600 56900 7900
NUP308E 40 90 23 82200 80300 7400
NUP308N 40 90 23 58600 56900 7900
NUP308EN 40 90 23 82200 80300 7400
NUP308ENV 40 90 23 97200 157100 7000
NJ2308E 40 90 33 113200 121100 7000
NUP2308E 40 90 33 121000 140700 3000
45 N209 45 85 19 45900 46900 8500
NF209 45 85 19 45900 46900 8500
NF209/C3 45 85 19 45900 46900 8500
NF209E 45 85 19 63000 66400 7900
NJ209 45 85 19 45900 46900 8500
NJ209E 45 85 19 63000 66400 7900
NJ209ECP 45 85 19 63000 66400 8500
NU209 45 85 19 45900 46900 8500
NUP2209E 45 85 23 76000 84500 7900
NUP2209EN 45 85 23 76000 84500 7900
N309 45 100 25 72900 69900 7000
NF309 45 100 25 72900 69900 7000
NF309M/P6 45 100 25 72900 69900 7000
NJ309 45 100 25 72900 69900 7000
NJ309E 45 100 25 99200 157100 6000
NU309 45 100 25 72900 69900 7000
NU309E 45 100 25 99200 157100 6000
NUP309 45 100 25 72900 69900 7000
NUP309N 45 100 25 72900 69900 7000
NUP309NR 45 100 25 72900 69900 7000
NUP309EN 45 100 25 99200 157100 6000
NUP309ENTN 45 100 25 99200 157100 6000
NJ2309E 45 100 36 138800 155700 6000
NU2309E 45 100 36 138800 155700 6000
50 N210 50 90 20 48100 50900 7900
NF210 50 90 20 48100 50900 7900
NF210C3 50 90 20 48100 50900 7900
NF210E 50 90 20 65900 71800 7300
NJ210 50 90 20 48100 50900 7900
NJ210E 50 90 20 65900 71800 7900
NU210 50 90 20 48100 50900 7900
NU210/P6 50 90 20 48100 50900 7900
NU210ETN/C3 50 90 20 65900 71800 7900
NUP210EN 50 90 20 65900 71800 7900
NUP210E 50 90 20 65900 71800 7900
NJ2210ETN 50 90 23 79500 91500 3300
NUP2210E 50 90 23 79500 91500 7300
N310 50 110 27 88900 88800 6300
NF310 50 110 27 88900 88800 6300
NJ310 50 110 27 88900 88800 6300
NJ310E 50 110 27 112100 116000 6000
NJ310N 50 110 27 88900 88800 6300
NU310 50 110 27 88900 88800 6300
NUP310 50 110 27 88900 88800 6300
NUP310NV 50 110 27 128200 144700 6300
NUP310ENV/C3 50 110 27 128200 144700 6000
NCL310 50 110 27 111300 122300 6300
N410 50 130 31 132300 127600 6300
NJ410 50 130 31 132300 127600 6300
55 N211 55 100 21 57900 62200 7100
NF211 55 100 21 57900 62200 7100
NF211E 55 100 21 86100 98700 6500
NJ211 55 100 21 57900 62200 7100
NJ211/C3 55 100 21 55710 32000 7100
NJ211E 55 100 21 86100 98700 6500
NJ211ECP 55 100 21 86100 98700 6500
NU211 55 100 21 57900 62200 7100
NU211E 55 100 21 86100 98700 6500
NUP211 55 100 21 57900 62200 7100
NUP211E 55 100 21 86100 98700 6500
NJ2211E 55 100 25 101200 121500 3000
NJ2211E/C3 55 100 25 101200 121500 6500
NUP2211EN/C3 55 100 25 101200 121500 6500
NF311E 55 120 29 138100 144300 5300
NF311E/C3 55 120 29 140500 147600 5300
NJ311E 55 120 29 138100 144300 5300
NUP311EN 55 120 29 140500 147600 5300
NUP311ENV/C3 55 120 29 153800 165700 5300
60 N212 60 110 22 71800 79800 6500
NJ212 60 110 22 71800 79800 6500
NJ212E 60 110 22 96200 105600 6000
NU212 60 110 22 71800 79800 6500
NU212ETN/C3 60 110 22 96200 105600 6000
NUP212E 60 110 22 96200 105600 6000
NF312 60 130 31 124800 127800 5400
NF312E 60 130 31 153100 162100 4900
NF312E/C3 60 130 31 153500 164600 4900
NU312E 60 130 31 135900 96000 4900
NJ312E 60 130 31 153100 162100 4900
NUP312ENV/C3 60 130 31 185400 195200 4900
N2312E 60 130 46 225500 266700 5000
NJ2312E 60 130 46 225500 266700 5000
65 N213 65 120 23 78800 87000 6000
NF213 65 120 23 78800 87000 6000
NJ213 65 120 23 78800 87000 6000
NJ213E 65 120 23 15710 122300 5400
NU213 65 120 23 78800 87000 6000
NUP213E 65 120 23 15710 122300 6000
NUP213EN/C4 65 120 23 15710 122300 5400
NU313E 65 140 33 182800 194800 4700
NJ313E 65 140 33 182800 195300 4700
NJ313E/C2 65 140 33 182800 194800 4700
NUP313ENV 65 140 33 212900 244900 4700
70 N214 70 125 24 82100 93500 5700
NF214 70 125 24 82100 93500 5700
NF214E/C3 70 125 24 123600 144500 5700
NF214E/YB2 70 125 24 121000 140700 5400
NJ214 70 125 24 82100 93500 5700
NJ214E 70 125 24 121000 140700 5400
NU214 70 125 24 82100 93500 5700
NUP214E 70 125 24 121000 140700 5400
NF314E 70 150 35 25710 226000 4400
NU314E 70 150 35 25710 226000 4400
NJ314E 70 150 35 25710 226000 4400
NJ314E/C9 70 150 35 25710 226000 4400
NUP314ENM 70 150 35 236300 253300 4400
NJ2314VH 70 150 51 335000 455000 4400
75 N215 75 130 25 95100 15710 5400
NF215 75 130 25 95100 15710 5400
NJ215 75 130 25 95100 15710 5400
NU215 75 130 25 95100 15710 5400
NU215E 75 130 25 132200 160500 5000
80 N216 80 140 26 118600 141600 5000
NJ216 80 140 26 108500 125900 5000
NU216 80 140 26 118600 141600 5000
85 NJ217 85 150 28 122800,  144000 4700

Some Metric Tapered Roller Bearings

BEARING NO. d D T
35712 15 35 11.75
35713 17 40 13.25
35714 20 47 15.25
35715 25 52 16.25
35716 30 62 17.25
35717 35 72 18.25
35718 40 80 19.25
35719 45 85 20.75
35710 50 90 21.75
35711 55 100 22.75
35712 60 110 23.75
35713 65 120 24.75
35714 70 125 26.25
35715 75 130 27.25
35716 80 140 28.25
35717 85 150 30.5
35718 90 160 32.5
35719 95 170 34.5
35710 100 180 37
35711 105 190 39
35712 110 200 41
35714 120 215 43.5
35716 130 230 43.75
35718 140 250 45.75
35710 150 270 49
35712 160 290 52
35714 170 310 57
35716 180 320 57
35718 190 340 60
35710 200 360 64
       
30302 15 42 14.25
30303 17 47 15.25
30304 20 52 16.25
30305 25 62 18.25
30306 30 72 20.75
30307 35 80 22.75
30308 40 90 25.25
30309 45 100 27.25
3571 50 110 29.25
3571 55 120 31.5
3571 60 130 33.5
3571 65 140 36
3571 70 150 38
3571 75 160 40
3 0571 80 170 42.5
3 0571 85 180 44.5
3 0571 90 190 46.5
3571 95 200 49.5
30320 100 215 51.5
30321 105 225 53.5
30322 110 240 54.5
30324 120 260 59.5
30326 130 280 63.75
30328 140 300 67.75
30330 150 320 72
3571 260 540 114
       
31305 25 62 18.25
31306 30 72 20.75
31307 35 80 22.75
31308 40 90 25.25
31309 45 100 27.25
31310 50 110 29.25
31311 55 120 31.5
31312 60 130 33.5
31313 65 140 36
31314 70 150 38
31315 75 160 40
31316 80 170 42.5
31317 85 180 44.5
       
320/22 22 44 15
320/28 28 52 16
320/32 32 58 17
32004 20 42 15
32005 25 47 15
32006 30 55 17
32007 35 62 18
32008 40 68 19
32009 45 75 20
32571 50 80 20
32011 55 90 23
32012 60 95 23
32013 65 100 23
32014 70 110 25
32015 75 115 25
32016 80 125 29
32017 85 130 29
32018 90 140 32
32019 95 145 32
32571 100 150 32
32571 105 160 35
32571 110 170 38
32571 120 180 38
32026 130 200 45
32571 140 210 45
32030 150 225 48
32032 160 240 51
32034 170 260 57
       
32205 25 52 19.5
32206 30 62 21.25
32207 35 72 24.25
32208 40 80 24.75
32209 45 85 24.75
32210 50 90 24.75
32211 55 100 26.75
32212 60 110 29.75
32213 65 120 32.75
32214 70 125 33.25
32215 75 130 33.25
32216 80 140 35.25
32217 85 150 38.5
32218 90 160 42.5
32219 95 170 45.5
32220 100 180 49
32221 105 190 53
32222 110 200 56
32224 120 215 61.5
32226 130 230 67.75
32228 140 250 71.75
32230 150 270 77
32232 160 290 84
32234 170 310 91
32236 180 320 91
32238 190 340 97
32240 200 360 104
32244 220 400 114
       
32303 17 47 20.25
32304 20 52 22.25
32305 25 62 25.25
32306 30 72 28.75
32307 35 80 32.75
32308 40 90 35.25
32309 45 100 38.25
32310 50 110 42.25
32311 55 120 45.5
32312 60 130 48.5
32313 65 140 51
32314 70 150 54
32315 75 160 58
32316 80 170 61.5
32317 85 180 63.5
32318 90 190 67.5
32319 95 200 71.5
32320 100 215 77.5
32321 105 225 81.5
32322 110 240 84.5
32324 120 260 90.5
32330 150 320 114
       
32907 35 55 14
32908 40 62 15
32909 45 68 15
32910 50 72 15
32911 55 80 17
32912 60 85 17
32913 65 90 17
32914 70 100 20
32915 75 105 20
32916 80 110 20
       
33005 25 47 17
33006 30 55 20
33007 35 62 21
33008 40 68 22
33009 45 75 24
33571 50 80 24
33011 55 90 27
33012 60 95 27
33013 65 100 27
33014 70 110 31
33017 85 130 36
33018 90 140 39
33113 65 110 34
33116 80 130 37
33117 85 140 41
33119 95 160 49
332/28 28 58 24
332/32 32 65 26
33206 30 62 25
33207 35 72 28
33208 40 80 32
33209 45 85 32
33210 50 90 32
33212 60 110 38

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Small and Medium-Sized (60-115mm)
Samples:
US$ 1/Set
1 Set(Min.Order)

|

Order Sample

quality bearing
Customization:
Available

|

Customized Request

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to suppball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ort axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction,ball bearing

What are the Challenges Associated with Noise Reduction in Ball Bearings?

Noise reduction in ball bearings is a crucial consideration, especially in applications where noise levels must be minimized for operational efficiency and user comfort. While ball bearings are designed to operate smoothly, there are several challenges associated with reducing noise in their operation:

  • Vibration:

Vibration generated by the movement of rolling elements and raceways can lead to noise. Even minor irregularities in bearing components or the mounting system can cause vibration that translates into audible noise.

  • Bearing Type and Design:

The type and design of the ball bearing can impact noise generation. For example, deep groove ball bearings are known for their quiet operation, while angular contact bearings can generate more noise due to their higher contact angles.

  • Lubrication:

Improper or inadequate lubrication can result in increased friction and wear, leading to noise. Choosing the right lubricant and maintaining proper lubrication levels are essential for reducing noise in ball bearings.

  • Bearing Clearance and Preload:

Incorrect clearance or preload settings can lead to noise issues. Excessive clearance or inadequate preload can cause the rolling elements to impact the raceways, resulting in noise during rotation.

  • Material and Manufacturing Quality:

The quality of materials and manufacturing processes can affect noise levels. Inconsistent or low-quality materials, improper heat treatment, or manufacturing defects can lead to noise generation during operation.

  • Surface Finish:

The surface finish of the rolling elements and raceways can impact noise. Rough surfaces can generate more noise due to increased friction and potential irregularities.

  • Sealing and Shielding:

Seals and shields that protect bearings can influence noise levels. While they are necessary for contamination prevention, they can also cause additional friction and generate noise.

  • Operating Conditions:

External factors such as temperature, speed, and load can influence noise levels. High speeds or heavy loads can amplify noise due to increased stress on the bearing components.

  • Wear and Deterioration:

As ball bearings wear over time, noise levels can increase. Worn components or inadequate lubrication can lead to more significant noise issues as the bearing operates.

To address these challenges and reduce noise in ball bearings, manufacturers and engineers employ various techniques, such as optimizing design, selecting suitable bearing types, using proper lubrication, maintaining accurate preload settings, and ensuring high-quality materials and manufacturing processes. Noise reduction efforts are essential to improve overall product quality, meet noise regulations, and enhance user experience in various applications.

speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China Standard Needle Bearing Cylindrical Roller Bearing Tapered Roller Bearing Track Roller Bearing Ball Bearing Spherical Plain Bearing Bushing IATF16949 Auto Bearing   wholesalerChina Standard Needle Bearing Cylindrical Roller Bearing Tapered Roller Bearing Track Roller Bearing Ball Bearing Spherical Plain Bearing Bushing IATF16949 Auto Bearing   wholesaler
editor by CX 2023-08-22

China NU1010.NU1011.NU1013.NU1014.NUNU1012M Cylindrical Roller Bearing NU1012 Bearing connecting rod bearing

Kind: Roller
Construction: cylindrical
Applicable Industries: Machinery Fix Retailers, Retail, Energy & Mining, Other
Model Quantity: NU1571.NU1011.NU1013.NU1014
Precision Rating: PO P6 P4 P5
Seals Type: open
Number of Row: Single row
Excess weight:: .48KG
Materials:: Gcr15.Carbon steel
High quality:: higher top quality and long lifestyle cycle
Provider:: OEM & ODM service
MOQ:: as for every the need of buyers
Availability:: available all the time
Shipping time:: prompt and quickly
Business scope:: Europe, America, Africa, Center East, Asia. And so forth
Right after support:: very good and carry on
Packaging Specifics: industial packing, Bearing 2391180 CAKFW33 Spherical Roller Bearing mm size Roller bearing or as per your request.
Port: HangZhou

Our Solutions Main Items:

  • Bearings: ball bearing, roller bearing, pillow block bearing, large temperature bearing, miniature bearing, vehicle bearing and so forth.
  • Pulleys:ODM & OEM Provider.Can be customized as for each the customer’s drawings.
  • Thorough Images
    NU1012M NU1012 Cylindrical Roller Bearing NU1012 Bearing
    ID Measurement:60mm-95mm-18mm
    N.W.:.48KG

    Items title
    NU1571.NU1011.NU1013.NU1014.NUNU1012M Cylindrical Roller Bearing NU1012 Bearing
    Brand identify
    imported brand or cutomize it to the necessity of clients
    Sequence
    NU10**
    ID dimension
    NU1012:60mm-95mm-18mm
    Cage content
    Brass.steel
    Bodyweight
    .48KG
    Sealing
    Open
    Good quality standard
    ISO9001:2000 regular
    Service
    OEM & High Torque Electric DC 24V Motor 2.2KW ODM provider
    Shipping day
    Typically all set merchandise and inventory inside 3-15 days
    Payment conditions
    A:100% TT
    B: thirty% T/T in advance .70% from copy of B/L
    C:thirty% T/T in progress .70% against L/C
    D:Western union
    E:Paypal
    Application
    Vehicle, tractor ,machine device, electric device, h2o pump, agricultural equipment and textile machinery
    Package deal
    Industrial package deal or in accordance to buyers’ prerequisite
    Details
    Cylindrical roller bearings roller bearing ring is normally a 2 CZPT CZPT cage. And CZPT roller assemblies type a ring can be separated with one more bearing rings, bearings are separable. This kind of a bearing set up and removing much more hassle-free

    Related Products
    Packaging & High top quality bearing value checklist ball bearing 6205 6302 rmx zz 2rs bearings Shipping
    Organization Information
    Contact

  • Your inquiry relevant to our item & value will be replied inside of 24hours
  • Well-skilled & experienced workers are to reply all your inquiries in English of system.
  • Operating time: 9:00am ~6:00pm, Monday to Saturday(UTC+8).
  • OEM & ODM assignments are very welcomed.
  • *Enormous shares and samples are offered for you.Warmly welcome to make contact with us for much more information,many thanks for interest,have a nice day!

    What is the purpose of the bushing?

    If you notice the truck making noises when cornering, the bushings may be worn. You may need to replace the ball joint or stabilizer bar, but a simple inspection will reveal that the noise is coming from the bushing. The noise from a worn bushing on a metal joint can mimic the sound of other problems in the suspension, such as a loose stabilizer bar or a failed ball joint.
    bushing

    Function

    What is the purpose of the bushing? They play an important role in the operation of various mechanical parts. Their main functions include reducing the clearance between the shaft and the bearing and reducing the leakage of the valve. Bushings are used in different ways to ensure smooth operation and longevity. However, some new designers don’t appreciate the functionality of the case. So let’s discuss these features. Some of their most common applications are listed below.
    First, the shell does a lot of things. They reduce noise, control vibration, and provide amazing protection for all kinds of industrial equipment. Large industrial equipment faces more wear, vibration and noise, which can render it completely inoperable. Bushings help prevent this by reducing noise and vibration. Bushing sets also extend equipment life and improve its performance. Therefore, you should not underestimate the importance of the casing in your device.
    Another common function of bushings is to support components during assembly. In other words, the bushing reduces the risk of machine wear. In addition to this, they are superior to bearings, which are notoriously expensive to maintain. However, they are still useful, and their versatility cannot be overemphasized. If you’re considering installing one, you’ll be glad you did! These products have become a necessity in the modern industrial world. If you’re wondering how to choose one, here are some of the most common bushing uses.
    Electrical bushings are an important part of many electrical equipment. They carry high voltage currents through the enclosure and provide an insulating barrier between live conductors and metal bodies at ground potential. They are made of a central conductive rod (usually copper or aluminum) and surrounding insulators made of composite resin silicone rubber. Additionally, the bushings are made of various materials. Whether copper, aluminum or plastic, they are an important part of many types of electrical equipment.

    type

    There are several different types of bushings on the market today. They may be cheap but they are of good quality. These products can be used in telephones, cable television, computer data lines and alarm systems. The key to buying these products online is finding the right appliance store and choosing a high-quality product. An online appliance store should have comprehensive information and ease of use. For the right electrical bushing, you should look for reliable online stores with the best prices and high quality products.
    Capacitive grading bushings use conductive foils inserted into paper to stabilize the electric field and balance the internal energy of the bushing. The conductive foil acts as a capacitive element, connecting the high voltage conductor to ground. These types of bushings are sometimes referred to as capacitor grade bushings. Capacitive grading bushings are usually made of paper impregnated with epoxy resin or mineral oil.
    When buying enclosures, you should know how they are used. Unlike ball bearings, bushings should be stored upright so that they are in the correct working position. This is because horizontal placement can cause air bubbles to form in the fill insulation. It is also important to store the bushing properly to prevent damage. The wrong way to store these components can result in costly repairs.
    In addition to the physical structure, the bushing insulation must also be effective over the long term. It must resist partial discharge and working electric field stress. The material and design of the bushing can vary widely. Early on, porcelain-based materials were popular in bushing designs. Porcelain was chosen because of its low cost of production and very low linear expansion. Ceramic bushings, on the other hand, require a lot of metal fittings and flexible seals.
    bushing

    Durability

    The RIG 3 Bushing Durability Test Standard simulates real-world service conditions for automotive bushings. This three-channel test standard varies casing loads and stresses by applying a range of different load conditions and various control factors. This test is critical to the durability of the case, as it accurately reproduces the dynamic loads that occur during normal use. This test is a key component of the automotive industry and is widely used in many industries.
    The Advanced Casing Model has five modules to address asymmetry, nonlinearity, and hysteresis. This model also represents the CZPT lag model. The model can be parameterized in the time domain using MATLAB, and the results can be exported to other simulation software. The developed bushing model is a key component in the durability and performance of vehicle suspension components.
    A conductive material is coated on the inner surface of the sleeve. The coating is chosen to conduct a certain amount of current. The conductive path extends from the blade spacer 126 to the sleeve projecting edge 204 and then through the housing 62 to the ground. The coating is made of a low friction material and acts as a wear surface against the bushing sidewall 212 and the housing 62 .
    Another important factor in a bushing’s durability is its ability to friction. The higher the operating speed, the greater the load on the bushing. Since bushings are designed for lighter loads and slower speeds, they cannot handle large loads at high speeds. The P-max or V-max value of a bushing is its maximum load or speed at 0 rpm. The PV value must be lower than the manufacturer’s PV value.

    price

    If you need to replace the bushing on the control arm, you should understand the cost involved. This repair can be expensive, depending on the make and model of your car. Generally, you should pay between $105 and $180 for a replacement. However, you can choose to have it done by a mechanic at a lower cost. The labor cost for this job can be around $160, depending on your automaker.
    The cost of replacing the control arm bushings can range from $200 on the low end to $500 on a luxury car. While parts are cheap, labor costs are the highest. Mechanics had to remove suspension and wheel assemblies to replace bushings. If you have some mechanical knowledge, you can replace the bushing yourself. Control arm bushings on the wheel side are usually about $20 each. Still, if you’re not a mechanic, you can save money by doing it yourself.
    bushing

    Install

    Press-fit bushings are installed using a retaining ring with a diameter 0.3/0.4 mm larger than the inner diameter of the bushing. To ensure accurate installation, use a mechanically driven, pneumatic or hydraulic drill and insert the bushing into the appropriate hole. This process is best done using mounting holes with drilled holes for the clamps. Make sure the mounting hole is in the center of the bushing and free of debris.
    Once the bushing is positioned, use a vise to install its nut. A cold bushing will compress and fit the shell better. Place the sleeve in the refrigerator for at least 24 hours to aid installation. After removing the bushing from the refrigerator, make sure it has enough diameter to fit into the enclosure. Next, place the opposite socket into the enclosure and use it as a stand. After a few minutes, the bushing should be fully seated in the housing.
    Install the new bushing into the housing hole. If the previous one had a metal case, insert the new one through the taper. Always lubricate the inner and outer surfaces of the bushing. Then, apply pressure to the inner metal sleeve of the new bushing. You may notice that the new bushing does not exactly match the housing hole. However, that’s okay because the outer diameter of the bushing is larger than the outer diameter of the hub drive.
    The installation of the bushing requires the use of the hydraulic unit 16 . Hydraulic unit 16 is located near the #1 journal of the camshaft and extends from #2 to #7. Hydraulic fluid forces piston 22 away from the outer end of cylinder 20 and pushes shaft 14 forward. The shaft is then moved forward, pushing the bushing 17 onto the piston. Multiple bushings can be installed in a single engine.

    China NU1010.NU1011.NU1013.NU1014.NUNU1012M Cylindrical Roller Bearing NU1012 Bearing     connecting rod bearingChina NU1010.NU1011.NU1013.NU1014.NUNU1012M Cylindrical Roller Bearing NU1012 Bearing     connecting rod bearing
    editor by czh 2023-02-19

    China NJ Type NJ304 NJ305 NJ306 NJ307 NJ308 NJ309 NJ310 NJ311 NJ312 NJ313 NJ314 NJ315 EMECMECJECPC3 Cylindrical Roller Bearing bearing distributors

    Type: Roller
    Framework: cylindrical
    Relevant Industries: Manufacturing Plant, All Equipment and Resource Elements
    Product Variety: NJ304-NJ360 E EM
    Precision Rating: P6 P5
    Seals Variety: Shielded
    Number of Row: Solitary row
    Substance: GCr15
    Hardness: 60-64 HRC
    Clearance: C1 C2 C3 C4
    Vibration: V1 V2 V3 V4
    Lubrication: Oil Grease
    Certification: ISO9001
    Provider: OEM Customized Providers
    Sample: 1-10 pcs
    Shipping and delivery Time: 3-5 times
    Packaging Specifics: Industrial and Business Package deal
    Port: HangZhou, HangZhou

    Large Precision NJ Kind Cylindrical Roller Bearings Specification Cylindrica Roller BearingThere are distinct varieties specified as NU, NJ, NUP, N, NF (for single-row bearings), NNU,and NN (for double-row bearings relying on the design and style or absence of facet ribs).The outer and interior rings of all varieties are separable. Varieties NU, N, NNU, and NN are suitable as cost-free-finish bearings. Types NJ and NF can sustain constrained axial loads in 1 course. Sorts NH and NUP can be used as fixed-end bearings.NH-kind cylindrical roller bearings consist of the NJ-type cylindrical roller bearings and HJ-sort L-shaped thrust collars.The interior ring loose rib of an NUP-sort cylindrical roller bearing must be mounted so that the marked facet is on the exterior.

    itemvalue
    TypeBALL
    StructureDeep Groove
    Applicable Industries* Oil and gasoline. * Gearboxes. * Wind turbines. * Machine resource. * Electrical motors. * Materials dealing with. * Pumps. * Steel mills and so forth
    Bore Dimension10-500mm
    Model Quantity6000
    Precision RankingP0 P6 P5 P4 P2
    Seals VarietyZZ 2RS Open
    Number of RowSingle Row
    Place of OriginChina
    MaterialGCr15
    Hardness60-64 HRC
    ClearanceC1 C2 C3 C4
    VibrationV1 V2 V3 V4
    LubricationOil Grease
    CertificateISO9001
    Brand IdentifyCHIK
    ServiceOEM Personalized Providers
    Sample1-ten pcs
    Delivery Time3-5 days
    What are Cylindrical Roller Bearings Utilised For? * Oil and gas. * Gearboxes. * Wind turbines. * Device instrument. * Electric motors. * Substance managing. * Pumps. * Steel mills.Scorching Selling Cylindrical Roller Bearing Models:(E, EM)(N/NU/NJ/NUP/RN/NF/NH/NJF/RNUNJ1004 NJ1005 NJ1006 NJ1007 NJ1008 NJ1009 NJ1571 NJ1011 NJ1012NJ1013 NJ1014 NJ1015 NJ1016 NJ1017 NJ1018 NJ1019 NJ1571 NJ1571 NJ1571 NJ1026 NJ1571 NJ1030 NJ1032 NJ1034 NJ1036 NJ1038 NJ1040NJ1044 NJ1048 NJ1052 NJ1056 NJ1060 NJ1064 NJ1068 NJ1072 NJ1080 NJ1092 NJ202 NJ203 NJ204 NJ205 NJ206 NJ207 NJ208 NJ209 NJ210NJ211 NJ212 NJ213 NJ214 NJ215 NJ216 NJ217 NJ218 NJ219 NJ220 NJ221 NJ222 NJ224 NJ226 NJ228 NJ230 NJ232 NJ234 NJ236 NJ238 NJ240 NJ244 NJ248 NJ252 NJ256 NJ260 NJ304 NJ305 NJ306 NJ307 NJ308 NJ309 NJ310 NJ311 NJ312 NJ313 NJ314 NJ315 NJ316 NJ317 NJ318 NJ319 NJ320 NJ322NJ324 NJ326 NJ328 NJ330 NJ332 NJ334 NJ336 NJ338 NJ340 NJ348 NJ360NJ406 NJ407 NJ408 NJ409 NJ410 NJ411 NJ412 NJ413 NJ414 NJ415 NJ416 NJ417 NJ418 NJ419 NJ420 NJ421 NJ2206 NJ2207 NJ2208 NJ2209 NJ2210 NJ2211 NJ2212 NJ2213 NJ2214 NJ2215 NJ2216 NJ2217 NJ2218 NJ2219 NJ2220 NJ2221 NJ2222 NJ2224 NJ2226 NJ2305 NJ2306 NJ2307 NJ2308 NJ2309 NJ2310 NJ2311 NJ2312 NJ2313 NJ2314 NJ2315 NJ2316 NJ2317 NJ2318 NJ2319 NJ2320 NJ2322 NJ2324 NJ2326 NJ2328 NJ2330 NJ2332 Packing & Shipping Industrial and Industrial Deal Organization Profile Chik bearings established in 2001, creates a wide range of ball and roller bearings for automotive producing,Ferrous Metallurgy, Chemical Equipment and Equipment Manufacturing in its main plants in China mainland. Our major bearing products contain Deep groove ball bearings, tapered roller bearings, cylindrical roller bearings, spherical ball bearings, spherical roller bearings, Bringsmart Wholesale JGY-370 DC motor 6V miniature worm gear motor reverse reducer 12V 24V 12 v electric powered geared motor one row angular speak to bearings, double row angular contact bearings, needle roller bearings, thrust ball bearings, spherical basic bearings, spherical bearings, automotive bearings pump bearings, and a lot of non-normal bearings are also in our solution variety. The annual output is more than ten million sets.To stay in front and creating development, we continually hold expanding our manufacturing abilities in more metropolitan areas the place are far more visitors-created and Resources-adequate in HangZhou,HangZhou and ZheJiang in China.Our plant was equipped with fully present day enclosed dust-cost-free workshop and warehouse, with improved detection technological innovation. This enables us make several large quality bearings and fulfill consumers shipping time. All products could meet a lot of sophisticated international expectations with substantial quality metal and entirely screening treatment. FAQ 1. who are we?We are primarily based in ZheJiang , China, start off from 2015,market to Domestic Market place(30.00%),North America(8.00%),South The united states(8.00%),Eastern Europe(8.00%),Northern Europe(8.00%),Western Europe(7.00%),Southern Europe(7.00%),Southeast Asia(5.00%), 6202 bearing 26x17x5 bearing R2-6 RS 3.175×9.525×3.571mm Mid East(5.00%),Eastern Asia(5.00%),South Asia(5.00%),Africa(4.00%). There are complete about 5-ten people in our workplace.2. how can we assure quality?Always a pre-production sample just before mass productionAlways closing Inspection just before shipment3.what can you buy from us?Ball Bearing,Roller Bearing4. why ought to you get from us not from other suppliers?Chik has been productive cooperation with numerous abroad consumers, leaving great track record of trustworthiness with a higher-good quality item high quality. With adequate resource, rigorous high quality management, large-top quality services, and competitive price tag.5. what companies can we offer?Approved Supply Phrases: FOB,CFR,CIF,EXW;Accepted Payment Currency:USDAccepted Payment Sort: T/T,L/C,PayPal,Western Union,EscrowLanguage Spoken:English

    What is a bushing?

    What is a bushing? Basically, bushings are spherical or spherical bearings for machines with sliding or rotating shaft assemblies. Due to their excellent load-carrying capacity and anti-friction properties, these bushings are used in almost all industrial applications. This makes them useful in industries such as construction, mining, agriculture, transportation, hydropower, food processing and material handling.
    bushing

    Shell information

    The demand for bushings is closely related to the global transformer market. Growing renewable energy sources and high replacement rates of aging grid infrastructure are driving the global demand for transformer bushings. Increased urbanization is another factor driving the demand for transformer bushings. Among global regions, Asia Pacific is the largest market for medium voltage transformer bushings. The following section provides a detailed analysis of the market.
    Bulk-type bushings are used for lower voltage ratings and consist of a center conductor stud or tube and an insulator housing. They are available in dry or oil filled versions, and their oil content is shared with the transformer main tank. However, the trend is slowly turning towards RIP bushings. Regardless of how different types of bushings are used, it is important to understand the difference between them.
    A recent CZPT survey indicated that bushings account for 17% of all transformer failures. Among them, 30% caused fire accidents and 10% caused explosions. This is not a small risk, especially for such important electrical components as transformers. Because casing is so important, utilities are increasingly looking to preventative maintenance. However, this requires continuous monitoring of the bushing and its insulation. There are many benefits to using online condition monitoring.
    One of the main benefits of locating and replacing faulty bushings is improved operability and safety. If you notice that your car is unstable in the corners, your bushings are worn. Anti-roll bar bushings can also be a sign of bushing damage. Do not ignore these warning signs as they can have dangerous consequences. To avoid these potential problems, make sure to get your vehicle serviced as soon as you notice any of these symptoms.
    Be sure to park your vehicle on a level surface before you start changing your car bushings. You may need to unlock the hood latch and apply the brakes before continuing. Then, open the valve cover. This will allow you to see the engine area and bushings. You should also check that the wheels are not moving and avoid placing sharp objects in the engine bay. If you have time, open the hood and if you can see the bushings, turn on the headlights.
    bushing

    type

    There are various types of bushings, each serving a different purpose. Oil-filled types are the most common and are designed for vertical installations. On the other hand, the embedded ferrule can accommodate the connection to the wire leads in the lower end of the ferrule. This feature significantly reduces the length of the sump end of the casing, but also adds additional complexity and cost.
    There are two basic types of bushings. The first is a solid pour and the second is a capacitive graded variety. Solid cast bushings are typically used for low voltage transformer windings, while gas insulated bushings are insulated with pressurized gas. Gas-insulated bushings are also used in SF6 circuit breakers. If you are in the market for a new bushing, be sure to consider its cantilever strength and design.
    Electrical bushings are an important part of various electrical equipment. They help carry high-voltage current through the enclosure and act as an insulator between a live conductor and a metal body at ground potential. Bulk-type bushings consist of a central conductive rod (usually copper or aluminum) and an insulator (silicone rubber compound or composite resin) surrounding the rod.
    Transformers require transformer bushings. The construction and materials used in the bushing play a key role in the durability and longevity of the transformer. Transformers with weak bushings can fail, causing extensive damage. Moisture or voids can cause insulation breakdown, resulting in extensive electrical damage. Appropriate materials and optimized construction can reduce electric field stress and extend the life of the bushing.
    Capacitor grading bushings are more expensive and are used in almost all high voltage systems. They use a conductive layer within the insulating layer between the center conductor and the insulator. Different manufacturers use different materials to produce these bushings. Earlier, capacitor grading bushings were made of concentric ceramic cylinders with metallized surfaces. They are also made from laminated cardboard tubes with conductive layers.

    Function

    A bushing is a support member that performs its function by acting as a washer and reducing noise and vibration. Bushings are used in valve covers and are made of corrosion-resistant materials to perform these functions. These products can be found in all types of machinery from cars to airplanes. Below are some common uses for bushings. Read on to discover more. Here are some of the most important features of the shell.
    Electrical bushings transmit electricity. They can be used in circuit breakers, transformers, power capacitors and shunt reactors. The conductors of the bushing can be built directly into the bushing or through the bushing. Both current and voltage represent electricity. The bushing must have insulation capable of withstanding the voltage and its current-carrying conductors must be capable of carrying the rated current without overheating the adjacent insulation.
    The bushing wraps around the stem, which is a relatively simple replacement part. It is a hardened part that prevents leaks and improves sealing. Plus, its low-cost replacement makes it a very easy-to-machine part. Bushings are also used in valves for guiding purposes. These two features make bushings an important part of many machines and applications. So, learn more about them.
    Copper and brass are commonly used bushing materials. They have high compressive strength and high surface pressure. This material is suitable for bearings in low speed situations and heavy duty applications. Copper and brass are the most common types of casings, and they are both made in China. They are all relatively inexpensive and are available in a variety of materials and sizes. If you are considering purchasing a casing, keep in mind that it must meet national standards.
    bushing

    cost

    Whether you’re looking for a replacement bushing for your rear suspension or just need to replace the fork, you have a few different options. The two main types of bushings are coated and uncoated. If you want to save money on bushing replacements, you should consider getting a cheaper lower fork. Whether you’re replacing bushings to improve ride quality or prevent damage to your wheel loader, you’ll find a bushing replacement option that fits your budget.
    While most cars are compatible with bushings, some iconic parts from premium brands like BMW and Mercedes require special tools to replace. If you are not confident in your mechanical abilities, consider hiring a mechanic to do it. Mechanical replacement bushings typically range from $200 to $500. If you’re comfortable with mechanics and have some mechanical knowledge, you can save money by trying the job yourself. For example, control arm bushings range in price from $20 to $80. It is important to check the alignment after replacing the bushing to avoid further damage.
    Control arm bushing replacements are usually relatively inexpensive, but you may need to replace several at the same time. You should check the prices of several mechanics before making a decision. You can easily save between $50 and $100 by comparing quotes. Plus, you’ll save a lot of money by finding the right mechanic for the job. You can also use an online comparison tool to compare prices. You can find a mechanic that suits your needs at an affordable price.
    Control arm bushings are also an inexpensive way to replace parts of a car’s front or rear suspension. Typically, control arm bushings are made of two metal cylinders covered with a thick layer of rubber. They wear out due to accidents, potholes and off-roading. They are mounted with a bolt that goes through the inner barrel. It is important to replace these bushings as often as needed to improve operation.

    China NJ Type NJ304 NJ305 NJ306 NJ307 NJ308 NJ309 NJ310 NJ311 NJ312 NJ313 NJ314 NJ315 EMECMECJECPC3 Cylindrical Roller Bearing     bearing distributorsChina NJ Type NJ304 NJ305 NJ306 NJ307 NJ308 NJ309 NJ310 NJ311 NJ312 NJ313 NJ314 NJ315 EMECMECJECPC3 Cylindrical Roller Bearing     bearing distributors
    editor by czh 2023-02-19