China manufacturer 6200 Zz, Industrial Motor, Water Pump, Engine Power, Air Compressor, Air Conditioner, Auto Part Motorcycle Spare Part Deep Groove Ball Bearing supplier

Product Description

Product Description

6200 series deep groove ball bearings
other series: product-list-1.html

Bearing NO (mm)Boundary Dimensions (Kn) (Kn) (r/min)Limit Rotational Speed (Kg)
Weight
d D B Dynamic Load Rating
Cr
Static Load Rating
Cor
Grease Lubrication Oil Lubrication
6200 10 30 9 5.11 2.39 24000 30000 0.032
6201 12 32 10 6.82 3.06 22000 28000 0.035
6202 15 35 11 7.64 3.72 20000 24000 0.045
6203 17 40 12 9.57 4.79 17000 20000 0.064
6204 20 47 14 12.84 6.65 15000 18000 0.103
6205 25 52 15 14.02 7.88 13000 15000 0.127
6206 30 62 16 19.46 11.31 11000 13000 0.202
6207 35 72 17 25.67 15.30 9500 11000 0.287
6208 40 80 18 29.52 18.14 8500 10000 0.367
6209 45 85 19 32.67 20.68 7500 9000 0.416
6210 50 90 20 35.07 23.18 7100 8500 0.462
6211 55 100 21 43.50 29.20 6300 7500 0.602
6212 60 110 22 52.50 36.00 5600 7100 0.789
6213 65 120 23 58.50 40.50 5300 6300 0.990
6214 70 125 24 63.70 45.00 5000 6300 1.100
6215 75 130 25 68.90 49.00 4800 5600 1.200
6216 80 140 26 72.50 53.00 4500 5300 1.400
6217 85 150 28 83.20 63.80 4300 5000 1.750
6218 90 160 30 95.80 71.50 4000 4800 2.200
6219 95 170 32 110.0 82.80 3800 4500 2.620
6220 100 180 34 122.0 92.80 3600 4300 3.200
6221 105 190 36 133.0 105.0 3400 4000
6222 110 200 38 144.0 117.0 2800 3400
6224 120 215 40 155.0 131.0 2600 3200

 

 

Detailed Photos

 


1.1 Black chamfer with rubber seal

1.2 Black chamfer with white dust cover

1.3 open UG

1.4 white chamfer with yellow dust cover

1.5 ceramic ball bearing

1.6 Non-standard bearings

1.7 DARM BRAND bearing 

THE USE OF THE BEARING
Some tips on use
Rolling bearing is a precise part. Therefore it should be used carefully. No matter how high performance the bearing has, it can be obtained by improper use, the followings are the points for attention to use bearings.
(1) Keep clean the bearing and its surrounding areas
It is harmful to the bearing even by tiny dust which can not be seen by human eyes. Therefore it should always keep clean the surrounding environments in order to prevent the bearing from dust corrosion.
(2) Use bearing carefully
Scar and indentation can essily be produced out of strong impact to the bearing in use and become the cause of accidents. Therefore special caution should be given to its use.
(3) Use the appropriate operating tool
Avoid using a hammer or heavy direct tap on a bearing or sleeve, must use appropriate tools such as press or heating.
(4) Be careful to the rust corrosion of the bearings
The sweat in the hands will cause rust in operating the bearings. Therefore your hands should be cleanly washed and dried before operation. You’d better wear gloves in doing the work. 
(5) Handler should familiar with bearing
(6) Establish bearing handling criteri
·Bearing storage
.Bearing and surrounding cleaning
.Dimension of mounting parts and inspection
.Machining quality
.Mounting handing
.After mounting inspection
·Disassembly handing
·Keep maintain
·Adding lubricant

 

Installation Instructions

 Bearing mounting
 Precautions for proper mounting of bearing
1) Bearing preparation
Bearing should not be unpacked until before mounting due to spray anti-corrosion oil and pack anti-corrosion paper. In addition, spray anti-corrosion oil on bearing have good lubricate function. For general purpose, just directly using bearing fill-in grease bearings, without cleaning. However, bearing for instrument or high speed rotating must be cleaned with clean filtered oil in order to remove the anti-corrosion oil. At that time, the bearings are easy to corrosion could not storage long term.
2) Inspection of shafts and housings
Cleaning shaft and housing, confirming no scratched or machine burrs, no CZPT and cutting piece in housing. Secondly comppare with drawing, the shaft and housing of dimension, form and machining quality should be inspected.
chart 1 Measure location for shaft diameter                                                                         chart 2  Measure location for housing bore diameter                       

As chart 1 and chart 2 showing, divided several locations to be measure on shaft and housing bore diameters, It should be careful inspected perpendicular between shaft, housing fillet dimension and shoulder.
Before mounting bearing, it should be sprayed mechanical oil on fitting surface after check out the shaft and housing.

Bearing storage
Before leaving the factory, the bearing is sprayed proper rust-inhibiting oil and packed rust-inhibiting paper. The quality of bearing is guaranteed, if the packing is not broken.
For long-term storage, if the humidity less than 65% and the temperature about 20, it should storage on shelf which is higher 30cm than ground.
In addition, storage occasion should avoid sunshine and contact with cold wall.

Pictures about packaging

 

Company Profile

Our Advantages

1. World-Class Bearing: We provide our customers with all types of indigenous bearing with world-class quality.
2. OEM or Non-Stand Bearings: Any requirement for Nonstandard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.
3. Genuine products With Excellent Quality: The company has always proved the 100% quality products it provides with genuine intent.
4. After Sales Service and Technical Assistance: The company provides after-sales service and technical assistance as per the customer’s requirements and needs.
5. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain. 
SAMPLES
1. Samples quantity: 1-10 PCS are available. 
2. Free samples: It depends on the Model No., material and quantity. Some of the bearings samples need client to
    pay samples charge and shipping cost. 
3. It’s better to start your order with Trade Assurance to get full protection for your samples order. 

CUSTOMIZED
The customized LOGO or drawing is acceptable for us. 

MOQ
1. MOQ: 10 PCS standard bearings. 
2. MOQ: 1000 PCS customized your brand bearings. 

OEM POLICY
1. We can printing your brand (logo, artwork)on the shield or laser engraving your brand on the shield. 
2. We can custom your packaging according to your design
3. All copyright own by clients and we promised don’t disclose any info.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Motor Parts: Motor Bearing
Water Pump Parts: Water Pump Bearing
Air Compressor Parts: Air Compressor Bearing
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

black or white or as required
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

What are the Challenges Associated with Noise Reduction in Ball Bearings?

Noise reduction in ball bearings is a crucial consideration, especially in applications where noise levels must be minimized for operational efficiency and user comfort. While ball bearings are designed to operate smoothly, there are several challenges associated with reducing noise in their operation:

  • Vibration:

Vibration generated by the movement of rolling elements and raceways can lead to noise. Even minor irregularities in bearing components or the mounting system can cause vibration that translates into audible noise.

  • Bearing Type and Design:

The type and design of the ball bearing can impact noise generation. For example, deep groove ball bearings are known for their quiet operation, while angular contact bearings can generate more noise due to their higher contact angles.

  • Lubrication:

Improper or inadequate lubrication can result in increased friction and wear, leading to noise. Choosing the right lubricant and maintaining proper lubrication levels are essential for reducing noise in ball bearings.

  • Bearing Clearance and Preload:

Incorrect clearance or preload settings can lead to noise issues. Excessive clearance or inadequate preload can cause the rolling elements to impact the raceways, resulting in noise during rotation.

  • Material and Manufacturing Quality:

The quality of materials and manufacturing processes can affect noise levels. Inconsistent or low-quality materials, improper heat treatment, or manufacturing defects can lead to noise generation during operation.

  • Surface Finish:

The surface finish of the rolling elements and raceways can impact noise. Rough surfaces can generate more noise due to increased friction and potential irregularities.

  • Sealing and Shielding:

Seals and shields that protect bearings can influence noise levels. While they are necessary for contamination prevention, they can also cause additional friction and generate noise.

  • Operating Conditions:

External factors such as temperature, speed, and load can influence noise levels. High speeds or heavy loads can amplify noise due to increased stress on the bearing components.

  • Wear and Deterioration:

As ball bearings wear over time, noise levels can increase. Worn components or inadequate lubrication can lead to more significant noise issues as the bearing operates.

To address these challenges and reduce noise in ball bearings, manufacturers and engineers employ various techniques, such as optimizing design, selecting suitable bearing types, using proper lubrication, maintaining accurate preload settings, and ensuring high-quality materials and manufacturing processes. Noise reduction efforts are essential to improve overall product quality, meet noise regulations, and enhance user experience in various applications.

ball bearing

How do Miniature Ball Bearings Differ from Standard-sized Ones, and Where are They Commonly Used?

Miniature ball bearings, as the name suggests, are smaller in size compared to standard-sized ball bearings. They have distinct characteristics and are designed to meet the unique requirements of applications that demand compactness, precision, and efficient rotation in confined spaces. Here’s how miniature ball bearings differ from standard-sized ones and where they are commonly used:

  • Size:

The most noticeable difference is their size. Miniature ball bearings typically have outer diameters ranging from a few millimeters to around 30 millimeters, while standard-sized ball bearings have larger dimensions suitable for heavier loads and higher speeds.

  • Load Capacity:

Due to their smaller size, miniature ball bearings have lower load-carrying capacities compared to standard-sized bearings. They are designed for light to moderate loads and are often used in applications where precision and compactness are prioritized over heavy load support.

  • Precision:

Miniature ball bearings are known for their high precision and accuracy. They are manufactured to tighter tolerances, making them suitable for applications requiring precise motion control and low levels of vibration.

  • Speed:

Miniature ball bearings can achieve higher speeds than standard-sized bearings due to their smaller size and lower mass. This makes them ideal for applications involving high-speed rotation.

  • Friction and Efficiency:

Miniature ball bearings generally have lower friction due to their smaller contact area. This contributes to higher efficiency and reduced heat generation in applications that require smooth and efficient motion.

  • Applications:

Miniature ball bearings find applications in various industries and sectors:

  • Electronics and Consumer Devices:

They are used in small motors, computer disk drives, printers, and miniature fans, where space is limited but precise motion is essential.

  • Medical and Dental Equipment:

Miniature bearings are used in medical devices such as surgical instruments, dental handpieces, and diagnostic equipment due to their precision and compactness.

  • Robotics and Automation:

Miniature ball bearings are integral to robotic arms, miniature conveyors, and automation systems, enabling precise movement in confined spaces.

  • Aerospace and Defense:

They are used in applications like UAVs (drones), aerospace actuators, and satellite components where size and weight constraints are critical.

  • Optics and Instrumentation:

Miniature bearings play a role in optical instruments, cameras, and measuring devices, providing smooth rotation and accurate positioning.

Overall, miniature ball bearings are specialized components designed for applications where space, precision, and efficient rotation are paramount. Their compactness and high precision make them crucial in various industries requiring reliable motion control in limited spaces.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China manufacturer 6200 Zz, Industrial Motor, Water Pump, Engine Power, Air Compressor, Air Conditioner, Auto Part Motorcycle Spare Part Deep Groove Ball Bearing   supplierChina manufacturer 6200 Zz, Industrial Motor, Water Pump, Engine Power, Air Compressor, Air Conditioner, Auto Part Motorcycle Spare Part Deep Groove Ball Bearing   supplier
editor by CX 2024-05-13