China Hot selling Customized 22mm Stainless Steel Ball 75mm SUS304 Sud316 100g 200g 500g Stainless Steel Ball Bearing for Merry Go Round bearing example

Product Description

Chemical composition

 

 

 

 

 

 

 

 

Material

C

Si

Mn

P

S

Ni

Cr

Mo

304

≤0.08

≤1.00

≤2.00

≤0.045

≤0.03

8.0-10.5

18.0-20.0

304L

≤0.03

≤1.00

≤2.00

≤0.045

≤0.03

8.0-13.0

18.0-20.0

316

≤0.08

≤1.00

≤2.00

≤0.045

≤0.03

10.0-11.0

16.0-18.0

2.0-3.0

316L

≤0.03

≤1.00

≤2.00

≤0.045

≤0.03

10.0-11.0

16.0-18.0

2.0-3.0

420

0.26-0.35

≤1.00

≤1.25

≤0.04

≤0.03

≤0.60

12.0-14.0

420C

0.36-0.43

≤0.80

≤0.80

≤0.04

≤0.03

≤0.60

12.0-13.5

440

0.90-1.00

≤0.80

≤0.80

≤0.04

≤0.03

≤0.60

16.0-18.0

0.4-0.7

440C

0.95-1.10

≤0.80

≤0.80

≤0.04

≤0.03

≤0.60

16.0-18.0

0.4-0.7

Grade:G10 to G1000

 

 

 

 

 

                                                                                             Grade

Ball diameter variation

Deviation from spherical from

Surface roughness

Lot diameter variation

Nominal ball deviation tolerance

 

Vdws

△Sph

Ra

Vdwl

Tdn

 

not over

 

 

 

 

 

μm

 

 

 

 

10

0.25

0.25

0.571

0.5

*

16

0.4

0.4

0.032

0.8

*

20

0.5

0.5

0.05

1

*

28

0.7

0.7

0.05

1.5

*

40

1.0

1.0

0.08

2

*

60

1.5

1.5

0.10

3

*

100

2.5

2.5

0.125

5

±12.5

200

5

5

0.5

10

±25

500

13

13

*

25

±50

1000

25

25

*

50

±125

1.Can you provide sample free?
Yes ,we can provide free samples with in 0.5kg.
2.What kind of payment terms you can accept?
We can accept T/T,L/C, Western Union and Paypal.
3.What about your steel ball’s quality?
Checking in the whole manufacturing process &100% inspection before shipment ensure the quality of our products.
4.What’s your packing method?
A) Inner packing: Dry packing or oil packing are provided according to you needs.
B) Outer packing:
1)volatile rust preventive paper + poly bag + iron drum + wooden / iron pallet.
2)25kg poly bag + carton + wooden pallet or wooden box.
3)customized packing.
5.What’s your delivery time?
Within 3-30 days according to your required size and quantity.
6.Is your steel ball competitive?
Yes, We are steel ball manufacture more than 30+ years.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Customized
Certification: ISO
Standard Parts: Yes
Universal: Yes
Type: Bearing Ball
Material: Stainless Steel
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Challenges Associated with Noise Reduction in Ball Bearings?

Noise reduction in ball bearings is a crucial consideration, especially in applications where noise levels must be minimized for operational efficiency and user comfort. While ball bearings are designed to operate smoothly, there are several challenges associated with reducing noise in their operation:

  • Vibration:

Vibration generated by the movement of rolling elements and raceways can lead to noise. Even minor irregularities in bearing components or the mounting system can cause vibration that translates into audible noise.

  • Bearing Type and Design:

The type and design of the ball bearing can impact noise generation. For example, deep groove ball bearings are known for their quiet operation, while angular contact bearings can generate more noise due to their higher contact angles.

  • Lubrication:

Improper or inadequate lubrication can result in increased friction and wear, leading to noise. Choosing the right lubricant and maintaining proper lubrication levels are essential for reducing noise in ball bearings.

  • Bearing Clearance and Preload:

Incorrect clearance or preload settings can lead to noise issues. Excessive clearance or inadequate preload can cause the rolling elements to impact the raceways, resulting in noise during rotation.

  • Material and Manufacturing Quality:

The quality of materials and manufacturing processes can affect noise levels. Inconsistent or low-quality materials, improper heat treatment, or manufacturing defects can lead to noise generation during operation.

  • Surface Finish:

The surface finish of the rolling elements and raceways can impact noise. Rough surfaces can generate more noise due to increased friction and potential irregularities.

  • Sealing and Shielding:

Seals and shields that protect bearings can influence noise levels. While they are necessary for contamination prevention, they can also cause additional friction and generate noise.

  • Operating Conditions:

External factors such as temperature, speed, and load can influence noise levels. High speeds or heavy loads can amplify noise due to increased stress on the bearing components.

  • Wear and Deterioration:

As ball bearings wear over time, noise levels can increase. Worn components or inadequate lubrication can lead to more significant noise issues as the bearing operates.

To address these challenges and reduce noise in ball bearings, manufacturers and engineers employ various techniques, such as optimizing design, selecting suitable bearing types, using proper lubrication, maintaining accurate preload settings, and ensuring high-quality materials and manufacturing processes. Noise reduction efforts are essential to improve overall product quality, meet noise regulations, and enhance user experience in various applications.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

Can you Explain the Various Types of Ball Bearings and their Specific Use Cases?

Ball bearings come in various types, each designed to meet specific application requirements. Here’s an overview of the different types of ball bearings and their specific use cases:

  • Deep Groove Ball Bearings:

Deep groove ball bearings are the most common and versatile type. They have a deep raceway that allows them to handle both radial and axial loads. They are used in a wide range of applications, including electric motors, household appliances, automotive components, and industrial machinery.

  • Angular Contact Ball Bearings:

Angular contact ball bearings have a contact angle that enables them to handle both radial and axial loads at specific angles. They are suitable for applications where combined loads or thrust loads need to be supported, such as in machine tool spindles, pumps, and agricultural equipment.

  • Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and are designed to accommodate misalignment between the shaft and the housing. They are used in applications where shaft deflection or misalignment is common, such as conveyor systems, textile machinery, and paper mills.

  • Thrust Ball Bearings:

Thrust ball bearings are designed to support axial loads in one direction. They are commonly used in applications where axial loads need to be supported, such as in automotive transmissions, steering systems, and crane hooks.

  • Single-Row vs. Double-Row Bearings:

Single-row ball bearings have a single set of balls and are suitable for moderate load and speed applications. Double-row ball bearings have two sets of balls and offer higher load-carrying capacity. Double-row designs are used in applications such as machine tool spindles and printing presses.

  • Miniature and Instrument Ball Bearings:

Miniature ball bearings are smaller in size and are used in applications with limited space and lower load requirements. They are commonly used in small electric motors, medical devices, and precision instruments.

  • Max-Type and Conrad Bearings:

Max-type ball bearings have a larger number of balls to increase load-carrying capacity. Conrad bearings have fewer balls and are used in applications with moderate loads and speeds.

  • High-Precision Ball Bearings:

High-precision ball bearings are designed for applications where accuracy and precision are critical, such as machine tool spindles, aerospace components, and optical instruments.

  • High-Speed Ball Bearings:

High-speed ball bearings are engineered to minimize friction and accommodate rapid rotation. They are used in applications such as dental handpieces, turbochargers, and centrifuges.

In summary, the various types of ball bearings are tailored to different application requirements, including load type, direction, speed, and environmental conditions. Selecting the appropriate type of ball bearing ensures optimal performance and longevity in specific applications.

China Hot selling Customized 22mm Stainless Steel Ball 75mm SUS304 Sud316 100g 200g 500g Stainless Steel Ball Bearing for Merry Go Round   bearing exampleChina Hot selling Customized 22mm Stainless Steel Ball 75mm SUS304 Sud316 100g 200g 500g Stainless Steel Ball Bearing for Merry Go Round   bearing example
editor by CX 2024-04-13